scholarly journals Mitigation of Harmonics and Unbalanced Voltage Disturbance Compensation by MSVPWM Based- DVR in the Distribution Net

Author(s):  
Haider Muhamad Husen

Recent power distribution networks comprise abundant sensitive loads, which extremely impact the power quality of source in electrical power networks. Voltage dip, voltage rise, imbalanced voltage, line notching and distortion of harmonics are problems of power quality frequently take place. Pre-disturbance voltage compensation strategy and phase-locked-loop (PLL) based dq- space vector control are presented to improve a Dynamic Voltage Restorer (DVR), which restore the magnitude of voltage disturbance and displacement of phase angle to prior of voltage disturbance. 3-phase Multilevel strategy of Space Vector Pulse Width Modulation (MSVPWM) based- Multilevel Diode Clamped Converter (MDCC) is proposed as switching pulse signals employed low frequency, which creates high levels of voltage and fewer harmonics in the output waveform in comparison to 2-level SVPWM based- DVR. 3-level SVPWM based- DVR under balanced and imbalanced distortion voltage disturbances included sags and swells injected appreciated quantities of voltage, thereby attained ideal sinusoidal waveform with lower Total Harmonic Distortion THD% compared to 2-level SVPWM based- DVR. Furthermore, real and imaginary powers balanced effectively at sensitive load during various distortion voltage disturbance conditions via presented work. The proposed simulation model of multi-level SVPWM based- DVR is implemented by dedicating the software system of MATLAB/SIMULINK. The results of simulation exhibit the effectiveness and efficiency of the presented work under different distortion voltage disturbance conditions.

2019 ◽  
Vol 8 (3) ◽  
pp. 7366-7369

Power quality has been an issue in electrical power systems. Disturbances occur in power quality which effects machines, some electric devices and severe cause will get very serious damages. For normal and efficient operation it’s necessary to compensate and acknowledge every type of the disturbances at earlier time of the power system. Many sorts of Custom Power Devices (CPD’s) are used to resolve these issues .Here at present, one in every of those devices, Dynamic Voltage restorer (DVR) is conferred. In power distribution systems this is often best and effective device employed. During this project new structure and control methodology of multifunctional DVRs for voltage quality correction are mentioned. Proportional Integral Controller and Fuzzy Logic Controller are used for the PQ improvement. The performance of the device and Total Harmonic Distortion is compared with each other. The performance of the device like voltage swell, sag is projected.


Author(s):  
Amarjeet Singh ◽  
Shivangee Shukla

The Wind generation system has potential application for the grid support that could be utilized in rural areas. However, continuous variation of wind speed results in severe power quality problems, especially in a standalone village network. In distributed generation, wind power system can cause sub harmonic and interharmonic components to appear in the spectrum of voltage and currents. These harmonics can cause flicker, overload, and interference, on the electronic equipments. This paper proposes Dynamic Voltage Restorer (DVR), which is the most efficient and effective modern custom power device used in power distribution networks. This could be used to improve the power quality in a rural load fed from a wind driven permanent magnet synchronous generator (PMSG). The reference voltage is tracked by voltage source converter using a switching band scheme. A method of extracting the phasor symmetrical components that contain both integer and non integer harmonics and complex Fourier transform relation is proposed. In this paper, it is demonstrated that this device can tightly regulate the voltage at the load terminal when load draws integer, non integer harmonic current and sag and swell in the source side.


Author(s):  
Patrick Taiwo Ogunboyo ◽  
Remy Tiako ◽  
Innocent E. Davidson

Dynamic Voltage Restorer (DVR) is a series connected power electronics based custom power device that is used to improve voltage disturbances in low voltage electrical power distribution network. Power quality requirement is one of the most important concerns for power system. The parts of the DVR is made up of voltage source inverter, injection/booster transformer, a harmonic filter, an energy storage device and a bypass switch. The DVR is used to inject three phase voltage in series and in synchronism with the network voltages in order to compensate voltage disturbances with a benefit of active /reactive power control. This paper presents a review of the researches on the dynamic voltage restorer application for power quality improvement in low voltage electrical power distribution networks. It describes power quality issues, principle of operation of DVR, basic components of DVR, DVRs control topologies in distribution network, DVR control strategies and compensation techniques.


Author(s):  
Fsaha Mebrahtu

In this chapter various harmonic sources and their effect on the distribution network and its mitigation procedures are discussed. In the distribution network, electrical power is mostly utilized for our daily activity. However, the quality of power in the distribution network is affected by different disturbances. The distribution power quality problems deteriorate the performance of the system. One of the disturbances of the distribution network is harmonic distortion. Disturbances not only produce excessive heat in the devices and appliances used in the daily life of human beings, but also reduce the life of the appliances. Finally, the harmonic distortion mitigation by using active power filter, space vector pulse width modulation, dynamic voltage restorer, voltage phase shift, and fuzzy logic controller is discussed.


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

<p>Power distribution networks are considered the main link between power industry and consumers and they are exposed to public judgment and evaluation more than any other section. Thus, it is essential to study power quality in distribution section. On the other hand, power distribution networks have always been exposed to traditional factors such as  voltage sag, voltage swell, harmonics and capacitor switching which destruct sinusoidal waveforms and decrease power quality as well as network reliability. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is  adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. This paper reviews on the application of DVR for Voltage Compensation in recent years and gives sets of information for each control of the DVR in distribution networks.</p>


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

As a consequence of sensitive, diverse and complex loads in today's distribution networks, improving power quality in distribution systems has attracted great attention. Power quality issues involve voltage sags, transient interrupts and other distortions in sinusoidal waveforms. Enormous methods have been proposed for power quality modification. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. Consisted of three single phase inverters and a DC bus, it can protect susceptible loads against various types of voltage sags as well as other disturbances in the power supply. Moreover, it is capable of generating and absorbing active and reactive power. Therefore, in this paper, different structures of  DVR have been investigated and eventually proposed a new structure for DVR based on Γ-Source asymmetric inverter. With the proposed structure, severe voltage sags can be retrieved 80- 90 percent. The simulation results that obtained by using MATLAB/Simulink indicate the properly functioning of proposed structure.


In the present energy scenario, one of major problems is with Power quality. Power quality came to more relevant, focused, with the addition of suitable equipment, where its behavior is very much important to the power supply quality. Power quality issue is a phenomenon noted as a not usual standard current, frequency or voltage which may results in a failure of sophiscated devices. The main issue focuses at the power swell & sag. In the paper, authors present a novel methodology for the prevention of voltage sag & swell. To rectify this issue, customized power equipments are adopted. Among them, Dynamic Voltage Restorer (DVR), the best as well as right advanced customized power equipment used in power distribution networks. The advantages include reduced price, low size, and its good transient response to the interferences. This work explain the MATLAB results of a Dynamic Voltage Restorer (DVR) modeling and analysis. Here, conventional controller like PI type and GA Tuned PI controller are used for comparison. In the offered method, PI controller parameters using GA Tuned implemented is being replaced by the traditional PI controller in order to develop the performance of the plant. The aim of the controller is made faster than conventional technique based controller. By MATLAB simulation tool, the performance can be studied.


Author(s):  
D. Sindhuja ◽  
V. Yuvaraju M.E.

<p>The power quality determines the fitness of the electrical power to the consumer devices. To improve the quality of the power delivered many compensating devices are used. The FACTS devices are normally used to reduce the power quality problems by inducing one or more AC transmission parameters. The static synchronous compensator (STATCOM) can act as either a source or sink of reactive AC power to an electricity network. The basic electronic block of the STATCOM is the voltage-source inverter that converts an input dc voltage into a three-phase output voltage. The STATCOM employs an inverter in order to obtain the voltage source of adjustable magnitude and phase from the DC link voltage on the capacitor. In this model, the STATCOM is designed with the five level diode clamped converter (DCC) controlled by space vector pulse width modulation (SVPWM) technique. The space vector technique with α, β frame is referred here. The dc link capacitor voltage equalization for the five level diode clamped converter was explained. The Total Harmonic Distortion of the source current will be considerably reduced.</p>


Author(s):  
Jamal Abdul-Kareem Mohammed ◽  
Arkan Ahmed Hussein ◽  
Sahar R. Al-Sakini

<p>Power distribution network in Iraq still suffers from significant problems regarding electricity distribution level. The most important problem is the disturbances that are occurring on lines voltages, which in turn, will negatively affect sensitive loads they feed on. Protection of these loads could be achieved efficiently and economically using the dynamic voltage restorer DVR when installed between the voltage source and load to inject required compensation voltage to the network during the disturbances period. The DVR mitigates these disturbances via restoring the load voltage to a pre-fault value within a few milliseconds. To control the DVR work, dq0 transformation concept and PID method with sinusoidal pulse-width modulation SPWM based converter had been used to correct the disturbances and thus enhance the power quality of the distribution network. The DVR performance was tested by MATLAB/Simulink with all kinds of expected voltage disturbances and results investigated the effectiveness of the proposed method.</p>


Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


Sign in / Sign up

Export Citation Format

Share Document