scholarly journals Improvement of Power Quality using DVR by Different Control Techniques

2019 ◽  
Vol 8 (3) ◽  
pp. 7366-7369

Power quality has been an issue in electrical power systems. Disturbances occur in power quality which effects machines, some electric devices and severe cause will get very serious damages. For normal and efficient operation it’s necessary to compensate and acknowledge every type of the disturbances at earlier time of the power system. Many sorts of Custom Power Devices (CPD’s) are used to resolve these issues .Here at present, one in every of those devices, Dynamic Voltage restorer (DVR) is conferred. In power distribution systems this is often best and effective device employed. During this project new structure and control methodology of multifunctional DVRs for voltage quality correction are mentioned. Proportional Integral Controller and Fuzzy Logic Controller are used for the PQ improvement. The performance of the device and Total Harmonic Distortion is compared with each other. The performance of the device like voltage swell, sag is projected.

Author(s):  
Haider Muhamad Husen

Recent power distribution networks comprise abundant sensitive loads, which extremely impact the power quality of source in electrical power networks. Voltage dip, voltage rise, imbalanced voltage, line notching and distortion of harmonics are problems of power quality frequently take place. Pre-disturbance voltage compensation strategy and phase-locked-loop (PLL) based dq- space vector control are presented to improve a Dynamic Voltage Restorer (DVR), which restore the magnitude of voltage disturbance and displacement of phase angle to prior of voltage disturbance. 3-phase Multilevel strategy of Space Vector Pulse Width Modulation (MSVPWM) based- Multilevel Diode Clamped Converter (MDCC) is proposed as switching pulse signals employed low frequency, which creates high levels of voltage and fewer harmonics in the output waveform in comparison to 2-level SVPWM based- DVR. 3-level SVPWM based- DVR under balanced and imbalanced distortion voltage disturbances included sags and swells injected appreciated quantities of voltage, thereby attained ideal sinusoidal waveform with lower Total Harmonic Distortion THD% compared to 2-level SVPWM based- DVR. Furthermore, real and imaginary powers balanced effectively at sensitive load during various distortion voltage disturbance conditions via presented work. The proposed simulation model of multi-level SVPWM based- DVR is implemented by dedicating the software system of MATLAB/SIMULINK. The results of simulation exhibit the effectiveness and efficiency of the presented work under different distortion voltage disturbance conditions.


Author(s):  
Patrick Taiwo Ogunboyo ◽  
Remy Tiako ◽  
Innocent E. Davidson

Dynamic Voltage Restorer (DVR) is a series connected power electronics based custom power device that is used to improve voltage disturbances in low voltage electrical power distribution network. Power quality requirement is one of the most important concerns for power system. The parts of the DVR is made up of voltage source inverter, injection/booster transformer, a harmonic filter, an energy storage device and a bypass switch. The DVR is used to inject three phase voltage in series and in synchronism with the network voltages in order to compensate voltage disturbances with a benefit of active /reactive power control. This paper presents a review of the researches on the dynamic voltage restorer application for power quality improvement in low voltage electrical power distribution networks. It describes power quality issues, principle of operation of DVR, basic components of DVR, DVRs control topologies in distribution network, DVR control strategies and compensation techniques.


Author(s):  
Jose M. Lozano ◽  
Juan M. Ramirez

A dynamic voltage restorer (DVR) based on an AC-AC converter is presented. It is able to compensate different common disturbances in distribution systems, with the purpose of improving the power quality delivered to the users. A prototype has been assembled to test the feasibility of the proposition. In this paper a modulation strategy based on the well known space vector modulation (SVM) algorithm is presented in order to synthesize controllable voltages in magnitude and waveform for compensation purposes. Unbalanced and harmonic distortion conditions in the supply voltages are taken into account. These results positively confirm the design, simulation, assembling, and expectations about the device.


Author(s):  
Dung Vo Tien ◽  
Radomir Gono ◽  
Zbigniew Leonowicz

Power quality is a major concern in electrical power systems. The power quality disturbances such as sags, swells, harmonic distortion and other interruptions have impact on the electrical devices and machines and in severe cases can cause serious damages. Therefore it is required to recognize and compensate all types of disturbances at an earliest to ensure normal and efficient operation of the power system. To solve these problems, many types of power devices are used. At the present time, one of those devices, Dynamic Voltage Restorer (DVR) is the most efficient and effective device used in power distribution system. In this paper, design and modeling of a new structure of multifunctional DVR for voltage correction is presented. The performance of the device under different conditions such as voltage swell, voltage sag due to symmetrical and unsymmetrical short circuit, starting of motors, and voltage distortion are described. Simulation result shows the superior capability of proposed DVR to improve power quality under different operating conditions. The proposed new DVR controller is able to detect the voltage disturbances and control the converter to inject appropriate voltages independently for each phase and compensate to load voltage through three single- phase transformers.


Author(s):  
Fsaha Mebrahtu

In this chapter various harmonic sources and their effect on the distribution network and its mitigation procedures are discussed. In the distribution network, electrical power is mostly utilized for our daily activity. However, the quality of power in the distribution network is affected by different disturbances. The distribution power quality problems deteriorate the performance of the system. One of the disturbances of the distribution network is harmonic distortion. Disturbances not only produce excessive heat in the devices and appliances used in the daily life of human beings, but also reduce the life of the appliances. Finally, the harmonic distortion mitigation by using active power filter, space vector pulse width modulation, dynamic voltage restorer, voltage phase shift, and fuzzy logic controller is discussed.


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

<p>Power distribution networks are considered the main link between power industry and consumers and they are exposed to public judgment and evaluation more than any other section. Thus, it is essential to study power quality in distribution section. On the other hand, power distribution networks have always been exposed to traditional factors such as  voltage sag, voltage swell, harmonics and capacitor switching which destruct sinusoidal waveforms and decrease power quality as well as network reliability. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is  adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. This paper reviews on the application of DVR for Voltage Compensation in recent years and gives sets of information for each control of the DVR in distribution networks.</p>


Author(s):  
Abirami Periaswamy ◽  
Merin Lizbeth George

<p>Now a days there is a widespread use of  semiconductor devices, which are mostly implemented as the power switches for converters and inverters. These converters and inverters play a vital role in power systems both in transmission and distribution systems. This provides a way for the introduction of harmonics in the power system which leads to poor power quality. To overcome this many solutions have been suggested by the research community but each solution holds its own merits and demerits. Of all these suggested solutions, the Dynamic Voltage Restorer is one of the most cost effective systems for various power quality issues. In this paper the DVR is considered for enhancing the power quality by reducing the harmonics generated because of sensitive loads. Here the power quality is enhanced by controlling the DVR using Neural Network Controller which is trained by Levenberg Marquardt algorithm. In this paper the THD analysis of the voltage quantity is analysed by introducing an unbalanced three phase fault in the system. The simulation is done by using MATLAB/Simulink. From the results, it is verified that the harmonics are reduced by the NN controlled DVR unit. Also the simulation results are verified with the hardware results. </p>


Author(s):  
Mahmoud Zadehbagheri ◽  
Rahim Ildarabadi ◽  
Majid Baghaei Nejad ◽  
Tole Sutikno

As a consequence of sensitive, diverse and complex loads in today's distribution networks, improving power quality in distribution systems has attracted great attention. Power quality issues involve voltage sags, transient interrupts and other distortions in sinusoidal waveforms. Enormous methods have been proposed for power quality modification. One of the methods by which power quality problems might be addressed is to apply power electronic devices in the form of custom power devices. One of such devices is Dynamic Voltage Restorer (DVR) which is connected in series to distribution networks. At the same time, through injection of voltage to the network it is able to control voltage amplitude and phase. It is adopted lend to compensate for voltage sags through injecting series and synchronous three phase voltage. Consisted of three single phase inverters and a DC bus, it can protect susceptible loads against various types of voltage sags as well as other disturbances in the power supply. Moreover, it is capable of generating and absorbing active and reactive power. Therefore, in this paper, different structures of  DVR have been investigated and eventually proposed a new structure for DVR based on Γ-Source asymmetric inverter. With the proposed structure, severe voltage sags can be retrieved 80- 90 percent. The simulation results that obtained by using MATLAB/Simulink indicate the properly functioning of proposed structure.


2015 ◽  
Vol 16 (4) ◽  
pp. 357-384 ◽  
Author(s):  
Suresh Mikkili ◽  
Anup Kumar Panda

Abstract Electrical power quality has been an important and growing problem because of the proliferation of nonlinear loads such as power electronic converters in typical power distribution systems in recent years. Particularly, voltage harmonics and power distribution equipment problems result from current harmonics produced by nonlinear loads. The Electronic equipment like, computers, battery chargers, electronic ballasts, variable frequency drives, and switch mode power supplies, generate perilous harmonics and cause enormous economic loss every year. Problems caused by power quality have great adverse economic impact on the utilities and customers. Due to that both power suppliers and power consumers are concerned about the power quality problems and compensation techniques. Power quality has become more and more serious with each passing day. As a result active power filter gains much more attention due to excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) ac power networks with nonlinear loads. However, this is still a technology under development, and many new contributions and new control topologies have been reported in the last few years. It is aimed at providing a broad perspective on the status of APF technology to the researchers and application engineers dealing with power quality issues.


Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


Sign in / Sign up

Export Citation Format

Share Document