scholarly journals Design Aspects of Proposed Alternative Solutions for Tertiary Irrigation Canal

2019 ◽  
Vol 4 (5) ◽  
pp. 139-147
Author(s):  
Mohamad Farouk Abd-elmagied ◽  
Fahmy Salah Abd-elhaleem

This study presents a five alternative systems for the protection of old lined mesqas. The main causes of damages were identified and the hydraulic calculations for mesqas were carried out. The suggested technical alternatives for old lined mesqas were; 1- U-shape reinforced concrete section under the ground level; 2- U-shape reinforced concrete section above the ground level; 3- Reinforced concrete pipe mesqa; 4- Fiber reinforced concrete lined mesqa; and 5- Grouted stone pitched lined mesqa. The design aspects of these five alternatives were analyzed and deliberated. The most promising alternative for protecting old lined mesqas is fiber reinforced concrete lining. Also, the grouted stone pitched lined mesqas economically recommended.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Dao-yuan Wang ◽  
Jia-suo Qi ◽  
Guang-yao Cui ◽  
Yanling Yang ◽  
Jie Chang

Adding fiber can improve the brittleness of plain concrete. Compared with plain concrete, basalt fiber-reinforced concrete has the advantages of strengthening, toughening, and crack resistance. Compared with steel fiber-reinforced concrete, basalt fiber-reinforced concrete has better construction performance. Basalt fiber concrete is a type of inorganic material with environmental protection and high mechanical properties, which has an important mechanical advantage for controlling the deformation of the soft surrounding rock tunnel. Through the indoor model test of mechanical behavior of reinforced concrete and basalt fiber-reinforced concrete lining, the bearing characteristics of basalt fiber-reinforced concrete lining was studied. The results show that, compared with reinforced concrete, the initial crack load of basalt fiber-reinforced concrete is increased by 20%; the toughness of lining structure is enhanced by adding basalt fiber, and the lining can still bear large bending moment and deformation after the initial crack appears; after the initial crack appears, the bearing characteristic curve of reinforced concrete lining rises slowly and converges rapidly; the bearing characteristic curve of basalt fiber-reinforced concrete lining rises slowly, and there is no sign of convergence when it reaches 2 times of initial crack load. For the soft surrounding rock tunnel, it is necessary to seal the rock surface as early as possible, provide support as soon as possible, and have a certain deformation capacity. Basalt fiber-reinforced concrete can better meet these needs.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Guang-yao Cui ◽  
Xue-lai Wang ◽  
Dao-yuan Wang

In order to study the antibreaking effect of the fiber reinforced concrete lining in the tunnel, this paper takes the a subway tunnel engineering project in F2-3 section of Jiujiawan fault as the research background and carries out the antibreaking model test of the fiber reinforced concrete lining in the active fault zone of high earthquake intensity. The results show that the antibreaking effect of the principle stress and the longitudinal strain of the fiber reinforced concrete lining are 30%∼40% and 80%∼90%, respectively, and the minimum value of the structural safety factor is increased by 4∼5 times. The antibreaking effect of hybrid fiber reinforced concrete lining is better than that of steel fiber reinforced concrete lining. The safety of steel polypropylene hybrid fiber reinforced concrete tunnel lining is the highest, and its minimum structural safety factor is 1.62. In the aspect of improving the antibreaking effect of the tunnel, the toughening effect of fiber reinforced concrete is stronger than that of reinforcing. The research results are of great significance to improve the antibreaking effect of tunnels in active fault areas with high earthquake intensity.


2000 ◽  
Vol 38 (4) ◽  
pp. 16-21 ◽  
Author(s):  
H. Kawaguchi ◽  
Y. Nagasawa ◽  
M. Kurita ◽  
M. Watanabe

Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Maristella E. Voutetaki ◽  
Maria C. Naoum ◽  
Nikos A. Papadopoulos ◽  
Constantin E. Chalioris

The addition of short fibers in concrete mass offers a composite material with advanced properties, and fiber-reinforced concrete (FRC) is a promising alternative in civil engineering applications. Recently, structural health monitoring (SHM) and damage diagnosis of FRC has received increasing attention. In this work, the effectiveness of a wireless SHM system to detect damage due to cracking is addressed in FRC with synthetic fibers under compressive repeated load. In FRC structural members, cracking propagates in small and thin cracks due to the presence of the dispersed fibers and, therefore, the challenge of damage detection is increasing. An experimental investigation on standard 150 mm cubes made of FRC is applied at specific and loading levels where the cracks probably developed in the inner part of the specimens, whereas no visible cracks appeared on their surface. A network of small PZT patches, mounted to the surface of the FRC specimen, provides dual-sensing function. The remotely controlled monitoring system vibrates the PZT patches, acting as actuators by an amplified harmonic excitation voltage. Simultaneously, it monitors the signal of the same PZTs acting as sensors and, after processing the voltage frequency response of the PZTs, it transmits them wirelessly and in real time. FRC cracking due to repeated loading ad various compressive stress levels induces change in the mechanical impedance, causing a corresponding change on the signal of each PZT. The influence of the added synthetic fibers on the compressive behavior and the damage-detection procedure is examined and discussed. In addition, the effectiveness of the proposed damage-diagnosis approach for the prognosis of final cracking performance and failure is investigated. The objectives of the study also include the development of a reliable quantitative assessment of damage using the statistical index values at various points of PZT measurements.


2012 ◽  
Vol 204-208 ◽  
pp. 1532-1537
Author(s):  
Li Qiao Jin ◽  
Tai Quan Zhou ◽  
Bao Hua Lv

Polypropylene fiber reinforced concrete can improve the common concrete flexibility and it is beneficial for interaction between concrete lining structure and rock mass. The use of fiber reinforced concrete with wet sprayed concrete technique can improve the concrete lining structure construction quality and improve the rock mass self-bearing capacity. The wet-sprayed fiber reinforced concrete is first introduced in Jinhuashan railway tunnel early stage lining structure within soft and weak rock mass. The design of Jinhuashan railway tunnel lining structure using fiber reinforced concrete is introduced and the requirement of material used is explained. To evaluate the lining effect using wet-sprayed fiber reinforced concrete, the online monitoring method is used to measure the rock mass pressure and the concrete lining layer stress for both the experimental tunnel sections and comparison tunnel section. The monitoring data result shows that the rock mass pressure in experimental section is even distribution with lower rock mass pressure and lower concrete lining layer stress. The value of rock mass pressure and tunnel lining layer stress in comparison tunnel section is a little higher than that in experimental tunnel section. The experimental tunnel section using fiber reinforced concrete has good lining effect.


2019 ◽  
Author(s):  
Fouad T. Al Rikabi ◽  
Shad M. Sargand ◽  
Issam Khoury ◽  
John Kurdziel ◽  
Husam H. Hussein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document