scholarly journals Model Test on Bearing Characteristics of Basalt Fiber-Reinforced Concrete Lining

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Dao-yuan Wang ◽  
Jia-suo Qi ◽  
Guang-yao Cui ◽  
Yanling Yang ◽  
Jie Chang

Adding fiber can improve the brittleness of plain concrete. Compared with plain concrete, basalt fiber-reinforced concrete has the advantages of strengthening, toughening, and crack resistance. Compared with steel fiber-reinforced concrete, basalt fiber-reinforced concrete has better construction performance. Basalt fiber concrete is a type of inorganic material with environmental protection and high mechanical properties, which has an important mechanical advantage for controlling the deformation of the soft surrounding rock tunnel. Through the indoor model test of mechanical behavior of reinforced concrete and basalt fiber-reinforced concrete lining, the bearing characteristics of basalt fiber-reinforced concrete lining was studied. The results show that, compared with reinforced concrete, the initial crack load of basalt fiber-reinforced concrete is increased by 20%; the toughness of lining structure is enhanced by adding basalt fiber, and the lining can still bear large bending moment and deformation after the initial crack appears; after the initial crack appears, the bearing characteristic curve of reinforced concrete lining rises slowly and converges rapidly; the bearing characteristic curve of basalt fiber-reinforced concrete lining rises slowly, and there is no sign of convergence when it reaches 2 times of initial crack load. For the soft surrounding rock tunnel, it is necessary to seal the rock surface as early as possible, provide support as soon as possible, and have a certain deformation capacity. Basalt fiber-reinforced concrete can better meet these needs.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yang Lv ◽  
Xueqian Wu ◽  
Mengran Gao ◽  
Jiaxin Chen ◽  
Yuhao Zhu ◽  
...  

Basalt fiber has arisen new perspectives due to the potential low cost and excellent mechanical performance, together with the use of environmental friendly coir can be beneficial to the development of sustainable construction. In this study, a new composite structure called basalt fiber reinforced polymer (BFRP) tube encased coconut fiber reinforced concrete (CFRC) is developed. The 28-day compression strength of the plain concrete is about 15 MPa, which represents the low-strength poor-quality concrete widely existing in many old buildings and developing countries. Three types of BFRP tubes, i.e., 2-layer, 4-layer, and 6-layer, with the inner diameter of 100 mm and a length of 520 mm, were prepared. The plain concrete (PC) and CFRC were poured and cured in these tubes to fabricated BFRP tube confined long cylindrical beams. Three PC cylindrical beams and 3 CFRC cylindrical beams were prepared to be the control group. The four-point bending tests of these specimens were carried out to investigate the enhancement due to the BFRP tube and coir reinforcement. The load-carrying capacity, force-displacement relationship, failure mode, and the cracking moment were analyzed. Results show that both BFRP tube confined plain concrete (PC) and BFRP tube confined CFRC have excellent flexural strength and ductility, and the inclusion of the coir can further enhance the ductility of the concrete.


2011 ◽  
Vol 194-196 ◽  
pp. 1103-1108 ◽  
Author(s):  
Yong Xin Yang ◽  
Jie Lian

In this paper, mechanical performances of 480 specimens are tested and influences of basalt fiber ratio, slenderness, soakage material are studied. Results indicate that mechanical properties of BFRC are better than plain concrete. It can be found that the best mechanical performance may be get when the basalt fiber soaked by water-solubility material and its ratio at 8.4 to 14 kg per square meter as well as slenderness at 600 to 800.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Guang-yao Cui ◽  
Jia-suo Qi ◽  
Dao-yuan Wang

Tunnels in soft rock with high ground stress will encounter the problem of large deformation of surrounding rock. The study of new high-performance tunnel lining materials is of great significance to improve the safety of tunnel excavation in soft rock with high ground stress. In this paper, the bearing characteristics of the plain concrete, the reinforced concrete, and the steel fiber reinforced concrete lining are studied by the indoor model experiment. By extracting the displacement and stress data of typical parts of lining, the bearing characteristics of the steel fiber reinforced concrete lining are analyzed and summarized. The test results show that the initial crack load and ultimate load of the steel fiber reinforced concrete lining are significantly higher than those of the other two materials, and the crack development path is more tortuous, and the number of cracks is greater. Steel fiber can improve the bearing capacity and deformation capacity of the lining structure so that the failure mode of the lining structure changes from brittle shear failure to ductile bending failure. It is concluded that steel fiber reinforced concrete can improve the toughness of lining. Because of its excellent mechanical properties, steel fiber reinforced concrete can completely replace the conventional reinforced concrete as a new lining material for soft rock tunnel. The above research results are of great significance to the design and construction of tunnel lining in the soft surrounding rock.


2014 ◽  
Vol 919-921 ◽  
pp. 1912-1915 ◽  
Author(s):  
Xiao Chun Fan ◽  
Di Wu ◽  
Hu Chen

Basalt fiber reinforced concrete has excellent basic mechanical properties. It has become a hot topic of engineering studies. Based on the freeze-thaw resistance of durability indices, through the comparative experiment on the dynamic elastic modulus and mass loss of plain concrete and basalt fiber reinforced concrete in the freeze-thaw cycles, this paper had discussed the impact of basalt fiber on the freeze-thaw resistance of concrete, and have considered whether the specimens were mixed with fly ash. The results showed that basalt fibers can improve the freeze-thaw resistance of concrete specimens significantly. After 100 freeze-thaw cycles, the dynamic elastic modulus of basalt fiber reinforced concrete specimens was 1.47 times as much as that of plain concrete specimens, and mass loss of basalt fiber reinforced concrete specimens was 0.64 times as much as that of plain concrete specimens. Fly ash had an influence on the freeze-thaw resistance of basalt fiber reinforced concrete. In engineering applications, the mixing amount of fly ash should be taken into consideration. This research had a certain reference value on the engineering applications of basalt fiber reinforced concrete.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 445
Author(s):  
José Valdez Aguilar ◽  
César A. Juárez-Alvarado ◽  
José M. Mendoza-Rangel ◽  
Bernardo T. Terán-Torres

Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred.


2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


2019 ◽  
Vol 10 (1) ◽  
pp. 241
Author(s):  
Wenjin Yao ◽  
Weiwei Sun ◽  
Ze Shi ◽  
Bingcheng Chen ◽  
Le Chen ◽  
...  

This paper experimentally investigates the blast-resistant characteristics of hybrid fiber-reinforced concrete (HFRC) panels by contact detonation tests. The control specimen of plain concrete, polypropylene (PP), polyvinyl alcohol (PVA) and steel fiber-reinforced concrete were prepared and tested for characterization in contrast with PP-Steel HFRC and PVA-Steel HFRC. The sequent contact detonation tests were conducted with panel damage recorded and measured. Damaged HFRC panels were further comparatively analyzed whereby the blast-resistance performance was quantitively assessed via damage coefficient and blast-resistant coefficient. For both PP-Steel and PVA-Steel HFRC, the best blast-resistant performance was achieved at around 1.5% steel + 0.5% PP-fiber hybrid. Finally, the fiber-hybrid effect index was introduced to evaluate the hybrid effect on the explosion-resistance performance of HFRC panels. It revealed that neither PP-fiber or PVA-fiber provide positive hybrid effect on blast-resistant improvement of HFRC panels.


Sign in / Sign up

Export Citation Format

Share Document