scholarly journals The impact of allometry on vomer shape and its implications for the taxonomy and cranial kinesis of crown-group birds

2021 ◽  
Vol 1 ◽  
pp. 1-None
Author(s):  
Olivia Plateau ◽  
Christian Foth
2020 ◽  
Author(s):  
Olivia Plateau ◽  
Christian Foth

AbstractCrown birds are subdivided into two main groups, Palaeognathae and Neognathae, that can be distinguished, among others, by the organization of the bones in their pterygoid-palatine complex (PPC). Shape variation to the vomer, which is the most anterior part of the PPC, was recently analysed by Hu et al. (2019) with help of geometric morphometrics to discover morphological differences between palaeognath and neognath birds. Based on this study, the vomer was identified as sufficient to distinguish the two main groups (and even more inclusive neognath groups) and their cranial kinetic system. As there are notable size differences between the skulls of palaeognaths and neognaths, we here investigate the impact of allometry on vomeral shape and its implication for taxonomic classification by re-analysing the data of the previous study. Different types of multivariate statistical analyses reveal that taxonomic identification based on vomeral shape is strongly impaired by allometry, as the error of correct identification is high when shape data is corrected for size. This finding is evident by a great overlap between palaeognath and neognath subclades in morphospace. The correct identification is further influenced by the convergent presence of a flattened vomeral morphotype in multiple neognath subclades. As the evolution of cranial kinesis has been linked to vomeral shape in the original study, the existing correlation between shape and size of the vomer across different bird groups found in the present study questions this conclusion. In fact, cranial kinesis in crown birds results from the loss of the jugal-postorbital bar in the temporal region and ectopterygoid in the PPC and the combination of a mobilized quadrate-zygomatic arch complex and a flexible PPC. Therefore, we can conclude that the vomer itself is not a suitable proxy for exploring the evolution of cranial kinesis in crown birds and their ancestors.


2000 ◽  
Vol 48 (6) ◽  
pp. 607 ◽  
Author(s):  
Shane T. Ahyong ◽  
Christine Harling

The stomatopods, or mantis shrimps, are malacostracan crustaceans of the subclass Hoplocarida. Extant hoplocarids belong to the order Stomatopoda and suborder Unipeltata, comprising the extinct, stem-lineage pseudosculdids and sculdids, and the crown group. Cladistic analysis including most or all genera of the unipeltatan families, and rooted to the extinct Tyrannophontidae, resulted in four most-parsimonious cladograms. The present results are more highly resolved and more robust than previous studies as the result of: more precise identification of suitable outgroups; a more complete outgroup data set, lessening the impact of missing data; and increased taxonomic sampling. The results largely support the existing five-superfamily classification, but as with two recent cladistic studies, Gonodactyloidea was polyphyletic. Gonodactyloidea is the basal crown-group superfamily and comprises mostly ‘smashers’. Two clades of ‘spearers’, Eurysquillidae and Parasquillidae, previously considered gonodactyloids, are more closely related to the Squilloidea and are referred to new superfamilies. The familial classification within Lysiosquilloidea is modified. Rather than deriving the ‘smashers’ from a long line of ‘spearers’, the present analysis suggests that the Unipeltata diverged in two broad directions from the outset. Hence, the gonodactyloid ‘smashers’ became specialised for hard substrates, and the remainder diversified into the other modern superfamilies, evolving more efficient ‘spearing’ claws, and occupying soft substrates.


2019 ◽  
Author(s):  
Tamara Spasojevic ◽  
Gavin R. Broad ◽  
Ilari E. Sääksjärvi ◽  
Martin Schwarz ◽  
Masato Ito ◽  
...  

ABSTRACTTaxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of molecular dating and especially in the framework of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of different outgroup sampling schemes on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group are Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We cover 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. In addition, we discover an artefact that might be detrimental for total-evidence dating: “bare-branch attraction”, namely high attachment probabilities of, especially, older fossils to terminal branches for which morphological data are missing. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Middle and Early Jurassic origin for Pimpliformes and Ichneumonidae, respectively. This first age estimate for the group not only suggests an older origin than previously thought, but also that diversification of the crown group happened before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information.


2016 ◽  
Vol 283 (1837) ◽  
pp. 20161378 ◽  
Author(s):  
Luke A. Parry ◽  
Gregory D. Edgecombe ◽  
Danny Eibye-Jacobsen ◽  
Jakob Vinther

As a result of their plastic body plan, the relationships of the annelid worms and even the taxonomic makeup of the phylum have long been contentious. Morphological cladistic analyses have typically recovered a monophyletic Polychaeta, with the simple-bodied forms assigned to an early-diverging clade or grade. This is in stark contrast to molecular trees, in which polychaetes are paraphyletic and include clitellates, echiurans and sipunculans. Cambrian stem group annelid body fossils are complex-bodied polychaetes that possess well-developed parapodia and paired head appendages (palps), suggesting that the root of annelids is misplaced in morphological trees. We present a reinvestigation of the morphology of key fossil taxa and include them in a comprehensive phylogenetic analysis of annelids. Analyses using probabilistic methods and both equal- and implied-weights parsimony recover paraphyletic polychaetes and support the conclusion that echiurans and clitellates are derived polychaetes. Morphological trees including fossils depict two main clades of crown-group annelids that are similar, but not identical, to Errantia and Sedentaria, the fundamental groupings in transcriptomic analyses. Removing fossils yields trees that are often less resolved and/or root the tree in greater conflict with molecular topologies. While there are many topological similarities between the analyses herein and recent phylogenomic hypotheses, differences include the exclusion of Sipuncula from Annelida and the taxa forming the deepest crown-group divergences.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Sign in / Sign up

Export Citation Format

Share Document