scholarly journals Real-Time Experimental Assessment of a New MPPT Algorithm Based on the Direct Detection of the Short-Circuit Current for a PV System

2021 ◽  
Vol 19 ◽  
pp. 598-603 ◽  
Author(s):  
C.B. Nzoundja Fapi ◽  
◽  
P. Wira ◽  
M. Kamta ◽  

To substantially increase the efficiency of photovoltaic (PV) systems, it is important that the Maximum Power Point Tracking (MPPT) system has an output close to 100%.This process is handled by MPPT algorithms such as Fractional Open-Circuit Voltage (FOCV), Perturb and Observe (P&O), Fractional Short-Circuit Current (FSCC), Incremental Conductance (INC), Fuzzy Logic Controller (FLC) and Neural Network (NN) controllers. The FSCC algorithm is simple to be implemented and uses only one current sensor. This method is based on the unique existence of the linear approximation between the Maximum Power Point (MPP) current and the short-circuit current in standard conditions. The speed of this MPPT optimization technic is fast, however this algorithm needs to short-circuit the PV panel each time in order to obtain the short circuit current. This process leads to energy losses and high oscillations. In order to improve the FSCC algorithm, we propose a method based on the direct detection of the shortcircuit current by simply reading the output current of the PV panel. This value allows directly calculating the short circuit current by incrementing or decrementing the solar irradiation. Experimental results show time response attenuation, little oscillations, power losses reduction and better MPPT accuracy of the enhanced algorithm compared to the conventional FSCC method.

2018 ◽  
Vol 7 (4.35) ◽  
pp. 457
Author(s):  
M. I. Iman ◽  
M. F. Roslan ◽  
Pin Jern Ker ◽  
M. A. Hannan

This work comprehensively demonstrates the performance analysis of Fuzzy Logic Controller (FLC) with Particle Swarm Optimization (PSO) Maximum Power Point Tracker (MPPT) algorithm on a stand-alone Photovoltaic (PV) applications systems. A PV panel, DC-DC Boost converter and resistive load was utilized as PV system. Three different MPPT algorithms were implemented in the converter. The result obtained from the converter was analyzed and compared to find the best algorithm to be used to identify the point in which maximum power can be achieve in a PV system. The objective is to reduce the time taken for the tracking of maximum power point of PV application system and minimize output power oscillation. The simulation was done by using MATLAB/Simulink with DC-DC Boost converter. The result shows that FLC method with PSO has achieved the fastest response time to track MPP and provide minimum oscillation compared to conventional P&O and FLC techniques.


Author(s):  
M. Vaigundamoorthi ◽  
R. Ramesh ◽  
V. Vasan Prabhu ◽  
K. Arul Kumar

Solar PV power generation has achieved rapid growth in developing countries which has many merits such as absence of noise, longer life, no pollution, less time for installation, and ease of grid interface. A maximum power point tracking circuit (MPPT) consists of DC-DC power electronics converters that are used to improve the energy attainment from solar PV array. This paper presents a detailed analysis to control of chaos, a non-linear dynamic in SEPIC DC-DC converter interfaced solar PV system, to minimize the oscillations near to MPP. In SEPIC DC-DC converter, the input inductor current is continuous and capable of sweeping the whole I-V curve of a PV module from open circuit voltage (Voc) to short circuit current (Isc) operating points. To trace the true maximum power point and to nullify the oscillations near to MPP, the yield output voltage needs to ensure period-1 operation.


Author(s):  
Lahcen El Mentaly ◽  
Abdellah Amghar ◽  
Hassan Sahsah

Background: The solar field on our planet is inexhaustible, which favors the use of photovoltaic electricity which generates no nuisance: no greenhouse gases, no waste. Methods: It is a high value-added energy that is produced directly at the place of consumption through photovoltaic (PV) solar panels. Notwithstanding these advantages, the maximum power depends strongly on solar irradiation and temperature, which means that a Maximum Power Point Tracking (MPPT) controller must be inserted between the PV panel and the load in order to follow the Maximum Power Point (MPP) continuously and in real time. In this work, MPP’s behavior was simulated at different temperatures and solar irradiations using seven techniques which identify the MPP by different methods. Results: The novelty of this work is that the seven MPPT methods were compared according to a very selective criterion which is the MPPT efficiency as well as a purely digital duty cycle control without using the PI controller. The simulation under the PSIM software shows that the FLC, TP, FSCC, TG, HC and IC methods have almost the same efficiency of 99%, whereas the FOCV method had a low efficiency of 96%. Conclusion: This makes it possible to conclude that the best methods are FLC, HC and IC because they use fewer sensors compared to the rest.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 321 ◽  
Author(s):  
Dmitry Baimel ◽  
Saad Tapuchi ◽  
Yoash Levron ◽  
Juri Belikov

This paper proposes two new Maximum Power Point Tracking (MPPT) methods which improve the conventional Fractional Open Circuit Voltage (FOCV) method. The main novelty is a switched semi-pilot cell that is used for measuring the open-circuit voltage. In the first method this voltage is measured on the semi-pilot cell located at the edge of PV panel. During the measurement the semi-pilot cell is disconnected from the panel by a pair of transistors, and bypassed by a diode. In the second Semi-Pilot Panel method the open circuit voltage is measured on a pilot panel in a large PV system. The proposed methods are validated using simulations and experiments. It is shown that both methods can accurately estimate the maximum power point voltage, and hence improve the system efficiency.


2013 ◽  
Vol 441 ◽  
pp. 268-271
Author(s):  
De Da Sun ◽  
Da Hai Zhang ◽  
Yang Liu

Photovoltaic (PV) power systems are widely used today, so its useful to study how to make the PV maximum power output. In this paper a novel approach based on Support Vector Machine (SVM) for maximum power point tracking (MPPT) of PV systems is presented. The output power characteristics of PV cells vary with solar irradiation and temperature, so the controllers inputs is the level of solar radiation and ambient temperature of the PV module, and the voltage at maximum power point (MPP) is the output. Results show that the proposed MPPT controller based on SVM is sensitive to environmental changes and has high efficiency and less Mean Square Error (MSE).


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Robinson Ndegwa ◽  
Justus Simiyu ◽  
Elijah Ayieta ◽  
Nicodemus Odero

Modeling and simulation of a photovoltaic solar system play a significant role in understanding its behavior in various environmental conditions. Utilization of the datasheet information in modeling and simulation of the PV system correlates the experimental data and the theory that instigate the mathematical predictions of an actual system. A single-diode model gives a simple, fast, and straightforward way of depicting the PV system performance. We have developed a new approach of determining the five unknown parameters of a single-diode model using manufacturer’s data at three main points: the open circuit point (OCP), short circuit point (SCP), and the maximum power point (MPP) of the IV and PV curves. The ideality factor (A) and the diode saturation current (Io) are the key unknown parameters that greatly affect the reduplication of the three main points. The purpose of this study is to evaluate the ideality factor using simple calculation procedure starting from its optimal value (Ao) and other values within the proximity of Ao. The optimal value is obtained by assumptions of negligible series resistance (Rs) and very large shunt resistance (Rsh). Therefore, the choice of the other ideality factors in the neighborhood of its optimal value gives rise to different values of Rs, Rsh, and Iph that are more realistic in an experimental setup. Positive values of Rsh and Rs have been iteratively obtained by utilizing data at maximum power point combined with open and short circuit data. The five unknown parameters have been determined in the proximity of Ao and have been used to plot the PV curve with accuracy and precision of less than 0.5% error of maximum power and less than 0.1% error of Voc of manufacturer’s data. The proposed method has been implemented using fast, simple, and accurate procedures using GNU Octave programming software to calculate Ao, Io, Rs, Rsh, and Iph and to execute both Rs-Rsh and PV characteristic equations of BP3235T, KC200GT, BP-SX 150, and MSX60 PV modules. The reduced steps employed in the algorithm improve execution speed, thereby reducing the computation time.


2013 ◽  
Vol 47 (4) ◽  
pp. 427-432 ◽  
Author(s):  
Hafiz Ullah

Positioning a photovoltaic (PV) panel in the plane of maximum irradiation can increase the power output up to 57%. An automatic microcontroller based system for maximum power point tracking (MPPT) was designed and analyzed. The system was based on positioning the PV panel perpendicular to the solar irradiation. Photosensors were used to measure the difference of solar radiation intensity among three planes. The tracking system used an 8051 microcontroller to control a stepper motor which rotated the panel towards the plane with highest radiation intensity. The MPPT system was found to be 25.9% more effective in capturing solar power than a fixed panel with the same rating. This system would be useful to increase the power output of currently operating solar panels with minor modifications in mounting. Bangladesh J. Sci. Ind. Res. 47(4), 427-432, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.4689


Sign in / Sign up

Export Citation Format

Share Document