scholarly journals Kajian Potensi Erosi Di Daerah Aliran Sungai Babon Menggunakan Permodelan GeoWEPP

G - SMART ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 98
Author(s):  
Revangga Dandha Pratama ◽  
Dimas Jalu Setyawan ◽  
Budi Santosa

At the time of the high intensity of rainfall in Semarang, the water contained in the Babon River had overflowed, resulting in flooding of parts of the area adjacent to the Babon river flow. This matter has many factors, there are erosion and sediment produced. This study aims to study erosion potential in the Babon watershed, using the Geospatial Interface for Water Erosion Prediction Project (GeoWEPP) modeling. The results of the modeling are the amount of erosion rate and erosion distribution in the study area. The erosion prediction period in this study is in 2006 - 2015. Data needed in GeoWEPP operation are Digital Elevation Model, climate data, land use data, and soil type data. Based on the GeoWEPP process in the Babon watershed the erosion rate was 36.1 tons / ha / year and the sediment yield was 26075.2 tons / year. From the results of the erosion rate produced divided by the reasonable erosion rate get the Erosion Hazard Level index (TBE) of 3.6 or including medium TBE. Based on the distribution of erosion maps produced, the area experienced the greatest erosion rate in the Ungaran region. This is due to the fact that it belongs to the highlands and has a high slope value.

2018 ◽  
Vol 937 (7) ◽  
pp. 23-34 ◽  
Author(s):  
I.N. Vladimirov

The article considers a new approach to landscape mapping based on the synthesis of remote sensing data of high and medium spatial resolution, a digital elevation model, maps of various thematic contents, a set of global climate data, and materials of field research. The map of the Baikalian’s Siberia geosystems is based on the principles of the multistage regional-typological and structural-dynamic classification of geosystems proposed by Academician V.B. Sochava. The structure of the geosystems of the Baikalian Siberia is characterized by great complexity, both in the set of natural complexes and in the degree of their contrast. The regional classification range covers the geosystems inherent in different subcontinents of Asia and reflects their interpenetration, being a unique landscape-situational example of Siberian nature within North Asia. The map of the geosystems of the Baikalian Siberia reflects the main structural and dynamic diversity of geosystems in the region in the systems of their geographic and genetic spatial structures. These landscape cartographic studies fit into a single system of geographic forecasting and create a new fundamental scientific basis for developing recommendations for optimizing nature management in the Baikal region within the framework of implementing state environmental policy.


2011 ◽  
Author(s):  
Dennis C Flanagan ◽  
James R Frankenberger ◽  
Thomas A Cochrane ◽  
Christian S Renschler ◽  
William J Elliot

2018 ◽  
Vol 33 (4) ◽  
pp. 616-626 ◽  
Author(s):  
Alessio Nicosia ◽  
Costanza Di Stefano ◽  
Vincenzo Pampalone ◽  
Vincenzo Palmeri ◽  
Vito Ferro ◽  
...  

2003 ◽  
Vol 27 (3) ◽  
pp. 295-300 ◽  
Author(s):  
Carlos Cardoso Machado ◽  
Alessandra Reis Garcia ◽  
Elias Silva ◽  
Alessandro Machado Fontes

O objetivo do trabalho foi testar o modelo WEPP (Water Erosion Prediction Project), através de comparações entre volume de enxurrada e perda de solo observados experimentalmente, provenientes dos segmentos de estradas florestais submetidas à chuva natural com inclinações de 1 e 7% e comprimentos de rampa de 20 e 40 m, e aqueles preditos pelo aplicativo, visando o desenvolvimento de um modelo brasileiro de predição de erosão em estradas florestais. Na determinação da quantidade do material erodido foram instalados tambores coletores, com capacidade de 209,25 litros, localizados na parte inferior das estradas, onde foram inseridas tubulações de PVC de 2 polegadas para coleta dos sedimentos provenientes da estrada propriamente dita. Nos tambores coletores foram feitos orifícios nivelados e perfeitamente iguais, posicionados a 0,65 m do fundo do primeiro e a 0,60 m do fundo do segundo, que funcionaram como um divisor Geib. Nas parcelas de 20 e 40 m de comprimento foram feitos cinco e sete orifícios, respectivamente, no primeiro e segundo tambores. O terceiro tambor foi utilizado para coletar o excedente da enxurrada proveniente do segundo tambor. Os tambores foram ligados em série, através de cano PVC de 2 polegadas. Os dados de volume e intensidade de precipitação diária foram obtidos com a instalação de pluviômetro e pluviógrafo no local. O período de coleta de dados foi de um ano, concentrando-se na época das chuvas. Posteriormente, os arquivos de clima, precipitação, solo, inclinação e comprimento do segmento foram introduzidos e adaptados ao modelo de predição de erosão WEPP com o propósito de testá-lo, visando a confecção de um modelo apropriado às condições brasileiras.


2021 ◽  
Author(s):  
Sajid Ali ◽  
Garee Khan ◽  
Wajid Hassan ◽  
Javed Akhter Qureshi ◽  
Iram Bano

Abstract Ice masses and snow of Hunza River Basin (HRB) are an important primary source of fresh water and lifeline for downstream inhabitants. Changing climatic conditions seriously put an impact on these available ice and snow masses. These glaciers may affect downstream population by glacial lake outburst floods (GLOF) and surge events due to climatic variation. So, monitoring of these glaciers and available ice masses are important. This research delivers an approach for selected glaciers of the Hunza river basin. An attempt is made in this study using Landsat (OLI, ETM, ETM+, TM), digital elevation model (DEM), Geographic Information System and Remote Sensing techniques (RS&GIS) techniques. We delineated 27 glaciers within HRB from the period of 1990-2018. These glaciers' total area is about 2589.75 ±86km 2 in 1990 and about 2565.12 ±68km 2 in 2018. Our results revealed that from 2009 to 2015, glacier coverage of HRB advanced with a mean annual advance rate of 2.22±0.1 km 2 a -1 . Conversely, from 1994 to 1999, the strongest reduction in glacier area with a mean rate of - 3.126±0.3km 2 a -1 is recorded. The glaciers of HRB are relatively stable compared to Hindukush, Himalayan and Tibetan Plateau (TP) region of the world. The steep slope glacier's retreat rate is more than that of gentle slope glaciers, and the glaciers below elevation of 5000 m above sea level change significantly. Based on climate data from 1995-2018, HRB shows a decreasing trend in temperature and increasing precipitation. The glacier area's overall retreat is due to an increase in summer temperature while the glacier advancement is induced possibly by winter and autumn precipitation.


2020 ◽  
Vol 5 (1) ◽  
pp. 125-132
Author(s):  
Nursida Arif ◽  
Projo Danoedoro ◽  
Hartono Hartono ◽  
Andrew Mulabbi

The purpose of this study was to  create an erosion prediction model in Serang Watershed, Indonesia. The erosion model used two input data, namely the slope derivied from Digital Elevation Model (DEM) data, and Fractional Vegetation Cover (FVC) from SPOT images. Assessment of the model was carried out using questionnaires and interviews with several experts by presenting the results of the model and its supporting data. Based on the DEM data, the level of slope steepness in the study area is very varied namely; flat (52.77%), sloping (7.62%), and rather steep to very steep (39.59%). Vegetation density according to the FVC results is dominated by medium density. The results of the analysis of the two input models can provide predictions of the level of erosion with an accuracy of 67.92%. Evaluation of the model was done by experts with conclusions that the method was very flexible and can be adapted to similar watersheds elsewhere.


2002 ◽  
Author(s):  
Chris S. Renschler ◽  
Dennis C. Flanagan ◽  
Bernard A. Engel ◽  
James R. Frankenberger

2015 ◽  
Vol 74 (7) ◽  
pp. 5827-5837 ◽  
Author(s):  
Abolghasem Akbari ◽  
Leila Sedaei ◽  
Mehdi Naderi ◽  
Azizan Abu Samah ◽  
Nazila Sedaei

Sign in / Sign up

Export Citation Format

Share Document