scholarly journals DETEKSI URUTAN OLIGONUKLEOTIDA Mycobacterium tuberculosis SECARA VOLTAMMETRI MENGGUNAKAN SCREEN PRINTED CARBON ELECTRODE (SPCE)

2016 ◽  
Vol 4 (2) ◽  
pp. 79
Author(s):  
Yeni Wahyuni Hartati ◽  
Yohan Yohan ◽  
Ratna Nurmalasari ◽  
Shabarni Gaffar ◽  
Rubianto A. Lubis
Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3373
Author(s):  
Mohd Hazani Mat Zaid ◽  
Che Engku Noramalina Che-Engku-Chik ◽  
Nor Azah Yusof ◽  
Jaafar Abdullah ◽  
Siti Sarah Othman ◽  
...  

Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10−13 M with a wide detection range from 1.0 × 10−6 to 1.0 × 10−12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.


2012 ◽  
Vol 571 ◽  
pp. 56-59
Author(s):  
Yu Fang Sha ◽  
Mei Zhao ◽  
Ming Quan Yang ◽  
Hai Xin Bai ◽  
Man Zhao

Biological multilayer films of redox polymer and horseradish peroxidase (HRP) were successfully assembled on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method based on the electrostatic interaction. The screen-printed carbon electrode surface was modified by the positively charged redox polymer, and the negatively charged HRP by LBL method.


2021 ◽  
pp. 130574
Author(s):  
P.E. Resmi ◽  
Jeethu Raveendran ◽  
P.V. Suneesh ◽  
T. Ramanchandran ◽  
Bipin G Nair ◽  
...  

2014 ◽  
Vol 447 ◽  
pp. 162-168 ◽  
Author(s):  
Nicolaj Cruys-Bagger ◽  
Hirosuke Tatsumi ◽  
Kim Borch ◽  
Peter Westh

Talanta ◽  
2012 ◽  
Vol 88 ◽  
pp. 432-438 ◽  
Author(s):  
Julien Biscay ◽  
Estefanía Costa Rama ◽  
María Begoña González García ◽  
A. Julio Reviejo ◽  
José Manuel Pingarrón Carrazón ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4324 ◽  
Author(s):  
Nurul Talib ◽  
Faridah Salam ◽  
Yusran Sulaiman

Clenbuterol (CLB) is an antibiotic and illegal growth promoter drug that has a long half-life and easily remains as residue and contaminates the animal-based food product that leads to various health problems. In this work, electrochemical immunosensor based on poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO) modified screen-printed carbon electrode (SPCE) for CLB detection was developed for antibiotic monitoring in a food product. The modification of SPCE with PEDOT/GO as a sensor platform was performed through electropolymerization, while the electrochemical assay was accomplished while using direct competitive format in which the free CLB and clenbuterol-horseradish peroxidase (CLB-HRP) in the solution will compete to form binding with the polyclonal anti-clenbuterol antibody (Ab) immobilized onto the modified electrode surface. A linear standard CLB calibration curve with R2 = 0.9619 and low limit of detection (0.196 ng mL−1) was reported. Analysis of milk samples indicated that this immunosensor was able to detect CLB in real samples and the results that were obtained were comparable with enzyme-linked immunosorbent assays (ELISA).


Sign in / Sign up

Export Citation Format

Share Document