scholarly journals Converging Newton’s Method With An Inflection Point of A Function

2017 ◽  
Vol 13 (2) ◽  
pp. 73
Author(s):  
Ridwan Pandiya ◽  
Ismail Bin Mohd

For long periods of time, mathematics researchers struggled in obtaining the appropriate starting point when implementing root finding methods, and one of the most famous and applicable is Newton’s method. This iterative method produces sequence that converges to a desired solution with the assumption that the starting point is close enough to a solution. The word “close enough” indicates that we actually do not have any idea how close the initial point needed so that this point can bring into a convergent iteration. This paper comes to answer that question through analyzing the relationship between inflection points of one-dimensional non-linear function with the convergence of Newton’s method. Our purpose is to illustrate that the neighborhood of an inflection point of a function never fails to bring the Newton’s method convergent to a desired solution

2017 ◽  
Vol 13 (2) ◽  
pp. 73
Author(s):  
Ridwan Pandiya ◽  
Ismail Bin Mohd

For long periods of time, mathematics researchers struggled in obtaining the appropriate starting point when implementing root finding methods, and one of the most famous and applicable is Newton’s method. This iterative method produces sequence that converges to a desired solution with the assumption that the starting point is close enough to a solution. The word “close enough” indicates that we actually do not have any idea how close the initial point needed so that this point can bring into a convergent iteration. This paper comes to answer that question through analyzing the relationship between inflection points of one-dimensional non-linear function with the convergence of Newton’s method. Our purpose is to illustrate that the neighborhood of an inflection point of a function never fails to bring the Newton’s method convergent to a desired solution


2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


2012 ◽  
Vol 220-223 ◽  
pp. 2658-2661
Author(s):  
Zhong Yong Hu ◽  
Liang Fang ◽  
Lian Zhong Li

We present a new modified Newton's method with third-order convergence and compare it with the Jarratt method, which is of fourth-order. Based on this new method, we obtain a family of Newton-type methods, which converge cubically. Numerical examples show that the presented method can compete with Newton's method and other known third-order modifications of Newton's method.


2015 ◽  
Vol 34 (2) ◽  
pp. 197-211
Author(s):  
D. Sbibih ◽  
Abdelhafid Serghini ◽  
A. Tijini ◽  
A. Zidna

In this paper, we describe an iterative method for approximating asimple zero $z$ of a real defined function. This method is aessentially based on the idea to extend Newton's method to be theinverse quadratic interpolation. We prove that for a sufficientlysmooth function $f$ in a neighborhood of $z$ the order of theconvergence is quartic. Using Mathematica with its high precisioncompatibility, we present some numerical examples to confirm thetheoretical results and to compare our method with the others givenin the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Fiza Zafar ◽  
Nawab Hussain ◽  
Zirwah Fatimah ◽  
Athar Kharal

We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with some other newly developed sixteenth-order methods. Interval Newton’s method is also used for finding the enough accurate initial approximations. Some figures show the enclosure of finitely many zeroes of nonlinear equations in an interval. Basins of attractions show the effectiveness of the method.


1983 ◽  
Vol 23 (03) ◽  
pp. 521-530 ◽  
Author(s):  
L.X. Nghiem ◽  
K. Aziz ◽  
Y.K. Li

Abstract A robust algorithm for flash calculations that uses an equation of state(EOS) is presented. It first uses a special version of the successive substitution(SS) method and switches to Powell's method if poor convergence is observed. Criteria are established for an efficient switch from one method to the other. Experience shows that this method converges near the critical point and also detects the single-phase region without computing the saturation pressure. The Soave-Redlich-Kwong (SRK) and the Peng-Robinson (PR) EOS's are used in this work, but the method is general and applies to any EOS. Introduction The calculation of vapor/liquid equilibrium using an EOS in multicomponent systems yields a system of nonlinear equations that must be solved iteratively. The SS method is commonly used, but it exhibits poor rate of convergence near the critical point. To overcome convergence problems, Newton's method has been used by Fussell and Yanosik to solve the equations. The drawback of Newton's method is the necessity of computing a complicated Jacobian matrix and its inverse at every iteration. Hence, for systems removed from their critical point it involves more work to arrive at the solution than the SS method. Furthermore, the radius of convergence of Newton's method is relatively small when compared to that of the SS method; hence, a good initial guess is required before convergence can be achieved. The single-phase region usually is determined by computing the saturation pressure and comparing it with the pressure of the system. This requires additional work, pressure of the system. This requires additional work, and it is sometimes difficult to decide whether a dewpoint or bubblepoint pressure, which involve different equations, should be computed. This paper presents a robust iterative method for flash calculations using either the SRK or the PR EOS, both of which have received much interest in recent years. The proposed method combines SS with Powell's iteration, proposed method combines SS with Powell's iteration, which is a hybrid algorithm consisting of a quasi-Newton method and a steepest-descent method. The SS method is used initially and is replaced by Powell's method if it demonstrates poor convergence, thus taking advantage of the simplicity of the former method and the robustness of the latter. The SS method has been modified so that the single-phase region can be detected without having to compute the saturation pressure. The nonlinear equations to be solved by an iteration scheme could behave differently, depending on their form and the variables for which they are solved. In this paper three different approaches are considered with paper three different approaches are considered with Powell's method. One of the three approaches is based Powell's method. One of the three approaches is based on the minimization of the Gibbs free energy. The convergence properties of the proposed schemes are demonstrated by three example problems. SPEJ P. 521


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyan Chen ◽  
Duoduo Zhang ◽  
Zhengyi Sun ◽  
Qi Yu

We aimed to investigate the relationship between testosterone (T) levels and pregnancy outcomes in patients with tubal or male infertility at different times during in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles. Patients with tubal or male infertility and normal androgen levels undergoing IVF/ICSI were consecutively recruited. We performed a longitudinal analysis of T levels at three time points (i.e., T0: baseline, T1: trigger day, and T2: day after the trigger day) in three groups with different pregnancy outcomes (i.e., group 1: no pregnancy; group 2: clinical pregnancy but no live birth; and group 3: live birth) as repeated measurement data using linear mixed-effects models. We also plotted fitted curves depicting the relationship between T levels and a number of oocytes retrieved at different time points and identified the inflection points of the curves. In total, 3,012 patients were recruited. Groups 1 and 3 had improvements in T levels at the three time points. After refitting, the slope in group 3 was significantly higher than that in group 1 (P = 0.000). Curves that reflected the association between T levels and numbers of retrieved oocytes presented an upward trend before a certain inflection point, after which the curves had no obvious changes or fell with increasing T levels. The inflection points for T0, T1, and T2 were calculated as 0.45, 0.94, and 1.09, respectively. A faster upward trend in T levels might be associated with better pregnancy outcomes. Within a range lower than a T level inflection point, more oocytes and embryos could be obtained with increasing T levels.


Sign in / Sign up

Export Citation Format

Share Document