scholarly journals DE-striping hype spectral Remote Sensing Images using Deep Convolutional Neural Network

2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Maad M. Mijwil ◽  
Atheel Sabih Shaker ◽  
Alaa Wagih Abdulqader

Hyperspectral far off detecting records reflectance or emittance information in a huge amount of bordering and tight unearthly groups, and accordingly has numerous data in distinguishing and planning the mineral zones. Then again, the science and natural information gives us some other productive data about the actual qualities of pictures and channels that have been recorded from the surface. In this work, we focus on de-striping the hyperspectral remote sensing images on Hyperion data by applying Deep Convolutional Neural Network (DCNN). What is clear is the high significance of applying the sufficient pre-preparing on Hyperion information as a result of low sign to-commotion proportion. By contrasting the known layers of DCNN model for de-striping hyperspectral pictures. The results obtained by applying the mentioned methods, it is revealed that all the higher stripes in an image as well as black color has been reduced and entirely associated with the Hyperion data alteration, and in contrast, the Hyperion imagery successfully corresponds to the de-striping of hyperspectral image with an accuracy of 91.89% using DCNN model. The proposed DCNN is capable of reaching high accuracy 150s after the start of the evaluation phase and never reaches low accuracy. The pre-trained DCNN model approach would be an adequate solution considering de-striping as its high inference time is lower compared existing available methods which are not as efficient for de-striping.

Author(s):  
Amith Chandrakant Chawan ◽  
Vaibhav K Kakade ◽  
Jagannath K Jadhav

Remote sensing imaging (RSI) technology has recently been identified as an effective photogrammetric data acquisition platform to rapidly provide high resolution images due to its profitability, its ability to fly at low altitude and the ability to analysis in dangerous areas. The various kinds of classification techniques are have been used for flood extent mapping for finding the flood affected region, but based on the color region based analysis the classified hazardous area has very complex. Due to over the above issues in this work there significant enhancements have appeared in the classification of remote sensing images using Contiguous Deep Convolutional Neural Network (CDCNN).In the flood detection system the four different kinds of process like preprocessing, segmentation, feature extraction and the Contiguous Deep Convolutional Neural Network (CDCNN) has been executed for identifying the flood defected region. This works also investigates and compare with the possible methods with the proposed CDCNN for accurately identified by the Classification details of the RSI


Sign in / Sign up

Export Citation Format

Share Document