scholarly journals Miniaturized Dual-Band Bandpass Filter Using Multilayered Dual-Mode Resonator

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Raaed T. Hammed ◽  
Dhuha G. Hammood

This paper presents a miniaturized dual-band bandpass filter using two coupled dual-moderesonators (DMRs). The dual-mode resonator is a short-circuited stub loaded square loop resonator. The concept of miniaturization achieved using multilayered technology. Therefore, the filter circuits are achieved in three layers. On the first layer, two coupled dual-mode resonators are designed and shorted to a ground layer to specify the required passbands. Next, a second layer employs two shorted quarter wavelength stubs coupled through one via hole are capacitively coupled to the first layer circuit to achieve the filtering response. For our demonstration, a multi-band bandpass filter is designed to serve a multifunctional wireless system has centre frequencies of 1.9 GHz GSM and 3.5 GHz WiMax systems. The filter is implemented and simulated using the momentum simulator of the Advanced Design System (ADS) software package. The filter response has two second-order passbands with four transmission zeros leads to a high skirt selectivity. The filter circuit area is very small, less than 37 mm2 terminating the feeding ports.

Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Chuanming Zhu ◽  
Jin Xu ◽  
Wei Kang ◽  
Zhenxin Hu ◽  
Wen Wu

AbstractIn this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.


2020 ◽  
Vol 71 (6) ◽  
pp. 433-435
Author(s):  
Shan Shan Gao ◽  
Jia-Lin Li ◽  
Zhe Lin Zhu ◽  
Jia Li Xu ◽  
Yong Xin Zhao

AbstractAn improved feedline configuration for dual-mode resonator filter is investigated in this paper. Based on the introduced topology, a dual-mode dual-band bandpass filter with center frequencies of 1.8 and 2.4 GHz is optimally designed, fabricated and tested. The introduced dual-band bandpass filter has simple structure and enables high selectivity to be realized due to two pairs of transmission zeros located near to the lower and upper passband, respectively. Both measured and simulated performances are presented with good consistency.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 293-300
Author(s):  
Dinghong Jia ◽  
Jianqin Deng ◽  
Yangping Zhao ◽  
Ke Wu

Abstract This work presents an approach to developing dual-mode dual-band substrate integrated waveguide (SIW) bandpass filter based on multilayer process. TE102/TE201 and TE101/TE102 modes are used to feature the two passbands, respectively. To begin with, large range of band location ratios are decided by the effective dimension of the SIW resonator. With reference to the field distribution, independent coupling schemes of the dual-modes are then realized by slots or circular apertures etched on the middle metal layer. It allows to not only introduce a large design freedom of bandwidth but also keep compactness. Finally, source-load and mixed couplings are deployed to produce transmission zeros around the passband in providing a sharp selectivity in the two filters, respectively. The details to independently control the center frequencies and bandwidth of two passbands are also presented. A two-order double-layered and a triple-layered SIW dual-band bandpass filter are prototyped to evaluate the proposed design approach, respectively. Results show a good agreement between simulations and measurements. The proposed filter exhibits flexible design freedom, high selectivity as well as good out-of-band rejection.


Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Masrukin ◽  
Tole Sutikno

This paper presents design of dual-band bandpass filter by integrating conventional quarter-wavelength short circuit stubs bandpass filter with U-shaped defected microstrip structure notch filter. Based on the parametric analysis, it is found that high attenuation level can be achieved by using two U-shaped defected microstrip structure separated by specific distance. The designed circuit simulated using advanced design system and fabricated based on Roger 4350B. The simulation results are in good agreement with measured results. The designed filter covered two pass bands centered at 2.51 GHz and 3.59 GHz with 3-dB fractional bandwidth of 15.94% and 15.86%, respectively, return losses better than 15 dB, and insertion losses better than 1 dB. The designed device can be used for wireless communication applications such as WLAN and WiMAX.


2008 ◽  
Vol 50 (6) ◽  
pp. 1567-1570 ◽  
Author(s):  
Atallah Balalem ◽  
Jan Machac ◽  
Abbas Omar

2017 ◽  
Vol 53 (7) ◽  
pp. 482-484 ◽  
Author(s):  
Wangshuxing Ieu ◽  
Dewei Zhang ◽  
Dongfang Zhou

Sign in / Sign up

Export Citation Format

Share Document