PREDIKSI PENGADAAN DAN PENGELOLAAN INVENTORI JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION PADA PERUM BULOG
Perum Bulog is a state-owned public company in food logistics field. Perum Bulog has a duty to stabilize food availability in Indonesia. The most consumed food by Indonesians is rice. It is estimated that the total national rice consumption reaches 30.25 million tons of rice. In this way, Perum Bulog must be able to meet their rice stock to maintain national food stability. However, in fact, in 2019 as many as 20 thousand tons of domestic rice had gone bad and caused the company to lose up to 167 billion. Thus, it is important to make predictions to determine the amount of rice stock in the future. One of the prediction techniques that can be used is prediction using Artificial Neural Networks. This study aims to determine the future rice stock of Perum Bulog using Artificial Neural Networks. Perum Bulog merupakan perusahaan umum milik negara yang bergerak di bidang logistik pangan. Perum Bulog memiliki tugas untuk menstabilkan ketersediaan pangan di Indonesia. makanan pokok yang paling sering dikonsumsi masyarakat Indonesia adalah beras. Diperkirakan jumlah konsumsi beras nasional mencapai 30,25 juta ton beras. Dengan begitu Perum Bulog harus dapat memenuhi stok beras mereka untuk menjaga kestabilan pangan nasional. Namun, nyatanya dilapan pada tahun 2019 sebanyak 20 ribu ton beras dalam negeri mengalami pembusukan dan membuat perusahaan rugi hingga 167 miliar. Dengan begitu pentingnya melakukan prediksi untuk mengetahui jumlah stok beras dimasa depan. Salah satu teknik prediksi yang dapa digunakan adalah prediksi menggunakan jaringan syaraf tiruan. Penelitian ini bertujuan untuk mengetahui stok beras masa depan Perum Bulog menggunakan jaringan syaraf tiruan.