scholarly journals Analysis of the transient inhibited steady-state in anaerobic digestion of a semisolid from pretreated bovine slaughterhouse wastewater

2020 ◽  
Vol 20 (2) ◽  
pp. 541-553
Author(s):  
V.C. Hernández-Fydrych ◽  
◽  
G. Benítez-Olivares ◽  
M.C. Fajardo-Ortiz ◽  
U. Rojas-Zamora ◽  
...  
2014 ◽  
Vol 2014 (2) ◽  
pp. 71-80
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Philomena Igbokwe ◽  
Joseph Nwabanne ◽  
◽  
...  

2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater


2005 ◽  
Vol 52 (1-2) ◽  
pp. 487-492 ◽  
Author(s):  
Y. Shang ◽  
B.R. Johnson ◽  
R. Sieger

A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.


2015 ◽  
Vol 5 (3) ◽  
pp. 293-300 ◽  
Author(s):  
N. H. Abdurahman ◽  
Y. M. Rosli ◽  
N. H. Azhari ◽  
Hayder A. Bari

Direct discharge of slaughterhouse wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD), total suspended solids (TSS) and biochemical oxygen demand. In this study, an ultrasonic-assisted membrane anaerobic system was used as a novel method for treating slaughterhouse wastewater. Six steady states were achieved, using concentrations of 7,800–13,620 mg/l for mixed liquor suspended solids and 5,359–11,424 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations were used to describe the kinetics of treatment at organic loading rates of 3–11 kg COD/m3/d. The removal efficiency of COD was 94.8–96.5% with hydraulic retention times of 308.6–8.7 days. The growth yield coefficient was found to be 0.52 g VSS/g. COD was 0.21 d−1 and methane gas production rate was 0.24–0.56 l/g COD/d. Steady-state influent COD concentrations increased from 8,000 mg/l in the first steady state to 25,400 mg/l in the sixth steady state. The minimum solids retention time, θcmin obtained from the three kinetic models was 6–14.4 days. The k values were 0.35–0.519 g COD/g VSS.d and μmax values were between 0.26 and 0.379 d−1. The solids retention time decreased from 600 to 14.3 days. The complete treatment reduced the COD content and its removal efficiency reached 94.8%.


Water SA ◽  
2006 ◽  
Vol 31 (4) ◽  
Author(s):  
GA Ekama ◽  
SW Sötemann ◽  
NE Ristow ◽  
MC Wentzel

Sign in / Sign up

Export Citation Format

Share Document