scholarly journals The potential of ultrasonic membrane anaerobic systems in treating slaughterhouse wastewater

2015 ◽  
Vol 5 (3) ◽  
pp. 293-300 ◽  
Author(s):  
N. H. Abdurahman ◽  
Y. M. Rosli ◽  
N. H. Azhari ◽  
Hayder A. Bari

Direct discharge of slaughterhouse wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD), total suspended solids (TSS) and biochemical oxygen demand. In this study, an ultrasonic-assisted membrane anaerobic system was used as a novel method for treating slaughterhouse wastewater. Six steady states were achieved, using concentrations of 7,800–13,620 mg/l for mixed liquor suspended solids and 5,359–11,424 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations were used to describe the kinetics of treatment at organic loading rates of 3–11 kg COD/m3/d. The removal efficiency of COD was 94.8–96.5% with hydraulic retention times of 308.6–8.7 days. The growth yield coefficient was found to be 0.52 g VSS/g. COD was 0.21 d−1 and methane gas production rate was 0.24–0.56 l/g COD/d. Steady-state influent COD concentrations increased from 8,000 mg/l in the first steady state to 25,400 mg/l in the sixth steady state. The minimum solids retention time, θcmin obtained from the three kinetic models was 6–14.4 days. The k values were 0.35–0.519 g COD/g VSS.d and μmax values were between 0.26 and 0.379 d−1. The solids retention time decreased from 600 to 14.3 days. The complete treatment reduced the COD content and its removal efficiency reached 94.8%.

1987 ◽  
Vol 22 (3) ◽  
pp. 474-490 ◽  
Author(s):  
R.L. Droste ◽  
S.R. Guiot ◽  
S.S. Gorur ◽  
K.J. Kennedy

Abstract Anaerobic treatment of dilute synthetic wastewater (300-1,000 mg chemical oxygen demand/L using laboratory upflow sludge blanket filter reactors with and without effluent recycle is described. Treatment of dilute synthetic wastewater at hydraulic retention times less than 1 and 2 h in reactors without and with recycle, respectively, resulted in biomass washout as the solids retention time decreased to less than 12 d. Reseeding would be required to operate at these critical hydraulic retention times for extended periods. Treatment of dilute synthetic wastewater at hydraulic retention times between 3-12 h resulted in soluble COD removal efficiencies between 84-95% treating 300 mg COD/L. At a 3 h hydraulic retention time, solids retention time of 80 d and stable reactor biomass concentrations of 25 g volatile suspended solids/L were maintained.


1984 ◽  
Vol 16 (12) ◽  
pp. 661-672 ◽  
Author(s):  
T E Wilson ◽  
W A Ambrose ◽  
H O Buhr

Five full scale activated sludge plants have been operated at low solids retention time (SRT, monthly averages as low as 0.8 days) and mixed liquor suspended solids (MLSS, monthly averages as low as 500 mg/l) values for 2 to 3 years. Operating results for this period are compared to 3 to 3-1/2 years of operation at conventional, higher, SRT and MLSS values. The data show that the lower SRT operation provided better effluent quality, typically achieving less than 15 mg/l of BOD5 or suspended solids, while not significantly increasing either the total (dry) sludge production or the sludge volume index (SVI). These data indicate that plants can be built and operated using significantly smaller tankage than conventionally accepted.


Author(s):  
Hamidi Aziz ◽  
Nur Puat ◽  
Motasem Alazaiza ◽  
Yung-Tse Hung

In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), phosphorus (P), nitrite (NO2), nitrate (NO3), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD5 and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.


2011 ◽  
Vol 71-78 ◽  
pp. 2852-2855
Author(s):  
Kun Shi ◽  
Ming Zou

The microcosm tests were done to estimated the HRT (Hydraulic Retention Time) and removal efficiency of reflowing treatment of the landfill leachate collected from Dalian Maoyingzi Municipal Solid Waste Landfill, which contained high levels of COD (Chemical Oxygen Demand, 38400 mg/L) and SS (Suspended Solids, 650 mg/L) by the reed constructed wetland located in the south area of Dalian Jiaotong University. The results showed that: (1) The HRT in nature soil cuboids were significant shorter than those in sieved soil cuboids (P<0.01); (2) The removal efficiency among the output water with the trend as follows: Preferential flow (53.9%)<Percolating water (59.2%)<Reflowing water (63.3%); (3) The COD and SS were decreased from 38400 and 650 mg/L to 14080 and 213 mg/L by the way of reflowing with the HSL (Hydraulic Surface Loading) of 0.16 m3/(m2·d) by reflowing (Removal efficiency: COD: 63.3%; SS: 67.3%).


Author(s):  
Raghad Salim Al-Shalabi, Naeima Ajib, Mahmoud Fattamah

Based on the interest in environmentally friendly materials for wastewater treatment, this research is aimed at evaluating the efficiency of almond shells work as biological carriers in activated sludge aeration tanks, known as the integrated fixed-film activated sludge treatment, a hybrid tank with attached growth and suspended growth is obtained. Almond shells were placed at 7% of the size of the aeration tank throughout the experiment period for about 4 months with a number of indicators such as hydraulic retention time and mixed liquor suspended solids. Two sets of experiments were performed, the first group with a constant hydraulic retention time ( HRT= 4 hours), and mixed liquor suspended solids was changed (500-1000-2000-3000 mg/ L), with the best removal efficiency at MLSS = 2000 mg/ l, by 91.3% and 92.1% for COD and SS respectively. The optimal MLSS concentration was adopted for the second group of experiments where HRT was increased to 5 and 6 hours. As a result, the best chain was found to be MLSS = 2000 mg/ l and HRT = 5 hours, with a removal efficiency of 93.4% and 93.9% for COD and SS respectively. As a result, the rate of return activated sludge was reduced from 100% to 60% and the rate of inflow into the aeration tank was increased due to the reduction HRT from 6 hours to 5 hours compared to conventional activated sludge treatment.


2020 ◽  
Vol 63 (4) ◽  
pp. 933-942
Author(s):  
Douglas W. Hamilton ◽  
Hernan Fernandez-Barriales Lopez ◽  
Emilia P. Cuesta Alonso

HighlightsA novel single-jet mixing system was designed for ASBR digesters.Mixing energy was reduced to the point that solids were only partially suspended in the reactor vessel.The partial mixing system increased effluent quality as measured by suspended solids content.The partial mixing system increased solids retention, allowing hydraulic retention time (HRT) to be reduced to at least 7.5 days while maintaining solids retention time (SRT) above 100 days.The partial mixing system did not reduce biogas production rate nor biogas yield.Abstract. An anaerobic sequencing batch reactor (ASBR) is a high-rate anaerobic digestion system ideally suited for the treatment of liquids with high organic strength and low solids content. Biota are retained in an ASBR by settling solids prior to decanting effluent from the top of the reactor. Solids retention time (SRT) can be managed separately from hydraulic retention time (HRT) in an ASBR. One problem encountered with ASBRs is poor solids retention due to inefficient solids settling. A novel mixing system in which solids are only partially mixed in the reactor prior to decanting was investigated in a series of three experiments. A battery of six 30 L ASBR reactors were fed a mixture of dilute swine manure (0.30% TS, 0.20% VS) and raw glycerol. In a side-by-side comparison of two reactors operated at an organic loading rate (OLR) of 0.30 g COD L-1 d-1 with 15-day HRT and two feeding cycles per day, the partially mixed reactor outperformed the fully mixed reactor as measured by effluent quality (130 vs. 350 mg VSS L-1), SRT (354 vs. 52 days), and VS removal efficiency (88% vs. 79%). In a replicated study of five reactors operated at 0.31 g COD L-1 d-1 OLR, 15-day HRT, and two feeding cycles per day before and after switching from full to partial mixing, the partially mixed reactors showed significantly (p = 0.05) better performance as measured by effluent quality (100 vs. 382 mg VSS L-1), SRT (760 vs. 72 days), and VS removal efficiency (85% vs. 71%). Biogas production did not significantly change with the change from full to partial mixing in the five replicated reactors, i.e., average biogas yield was 0.81 and 0.77 L biogas g-1 COD with partial and full mixing, respectively. Effluent quality, SRT, VS removal efficiency, and biogas yield did not significantly change when the OLR was increased from 0.31 to 0.62 g COD L-1 d-1 and HRT was reduced from 15 to 7.5 days in a replicated study of six partially mixed reactors. A mass balance of COD across the six partially mixed reactors showed that endogenous respiration of retained biomass accounted for approximately 50% of the biogas produced by an ASBR with SRT exceeding 400 days. Keywords: Anaerobic digestion, Anaerobic sequencing batch reactor, ASBR, Biogas, Glycerol, Hydraulic retention time, Mixing, Operation, Performance, Solids retention time, Swine manure.


2016 ◽  
Vol 8 (1) ◽  
pp. 68-75 ◽  
Author(s):  
N. H. Abdurahman ◽  
N. H. Azhari

Abstract The direct discharge of palm oil mill effluent (POME) wastewater causes serious environmental hazards due to its high chemical oxygen demand (COD) and biochemical oxygen demand. This paper proposes a new approach for integrated technology of ultrasonic membrane for a POME treatment. The paper evaluated the economic viability based on the changes of the new design of ultrasonic membrane anaerobic system (UMAS) when a POME introduces this approach. Six steady states were attained as a part of a kinetic study that considered concentration ranges of 13,800–22,600 mg/L for mixed liquor suspended solids and 10,400–17,350 mg/L for mixed liquor volatile suspended solids. Kinetic equations from Monod, Contois and Chen and Hashimoto were employed to describe the kinetics of POME treatment at organic loading rates ranging from 1 to 15 kg COD/m3/d. throughout the experiment, the removal efficiency of COD was from 92.8 to 98.3% with hydraulic retention time from 500.8 to 8.6 days. The growth yield coefficient, Y, was found to be 0.73 gVSS/g COD, the specific microorganism decay rate was 0.28 day–1 and the methane gas yield production rate was between 0.27 and 0.62 L/g COD/d.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
J. Sánchez Rubal ◽  
J. A. Cortacans Torre ◽  
I. del Castillo González

The aim of this research was to determine the influence of temperature, agitation, sludge concentration, and solids retention time (SRT) to obtain readily biodegradable organic matter on primary sludge (PS) fermentation, which would be used as substrate in a biological nutrient removal (BNR) process. Stirring and heating the sludge as well as increasing SRT improved the PS fermentation, producing a large amount of soluble chemical oxygen demand (SCOD). The influence of each operational parameter on PS hydrolysis was observed clearly. A great performance on SCOD production was obtained when the PS was stirred and heated for 3 days. However, PS concentration did not affect the fermentation. Sludge agitation is a simple process with minimal energy consumption. Warming the sludge is very interesting in those plants with anaerobic digestion, where heat energy is obtained from biogas. Therefore, PS fermentation can be improved with a minimum investment and leveraging existing resources in a wastewater treatment plant (WWTP). Fermenter volume can also be reduced if sludge is being heated and stirred during fermentation.


2011 ◽  
Vol 3 (5) ◽  
pp. 112-117
Author(s):  
Ala Kirjanova ◽  
Mindaugas Rimeika ◽  
Regimantas Dauknys

The aim of this work was to evaluate the removal of suspended solids (SS) and 7-day biochemical oxygen demand (BOD7) in a three chamber septic tank depending on theoretical wastewater retention time and the degree of septic tank cleanliness. It was found out that the performance of the septic tank depended on the degree of its cleanliness: when the septic tank was clean and retention time was three days, SS and BOS7 removal efficiency was 77±10% and 67±14% respectively, whereas two months later, after septic tank desludging, SS removal efficiency decreased to 53±22% and BOD7 to 32±31%. The performance of the septic tank also depended on theoretical wastewater retention time: when some amount of solids was accumulated at the bottom of the septic tank and wastewater retention time was one day, SS and BOS7 removal efficiency was 45±40% and 33±16% respectively; when retention time was three days, SS removal efficiency increased to 53±22% but BOD7removal efficiency remained similar to one day retention time, i.e. 32±31%. Santrauka Bandymų metu buvo įvertintas organinių ir skendinčiųjų medžiagų šalinimas trijų kamerų septike esant vienos ir trijų parų teorinėms nuotekų išbuvimo septike trukmėms bei skirtingam septiko švarumo laipsniui – iš karto po septiko išvalymo, kai jis dar yra švarus, ir praėjus tam tikram laiko tarpui, kai ant septiko dugno yra susikaupęs tam tikras nuosėdų kiekis. Tyrimais nustatyta, kad septiko veikimas priklauso nuo septiko švarumo laipsnio: esant trijų parų nuotekų išbuvimo septike trukmei, vidutinis skendinčiųjų medžiagų (SM) šalinimo efektyvumas buvo 77±10 %, o septynių parų biocheminio deguonies suvartojimo (BDS7) – net 67±14 %, kai septikas buvo švarus, tačiau praėjus dviem mėnesiams nuo septiko išvalymo jo veikimas pablogėjo ir vidutinis SM šalinimo efektyvumas po septiko išvalymo buvo 53±22 %, o BDS7 – 32±31 %. Taip pat nustatyta, kad šalinant teršalus didelę reikšmę turi nuotekų išbuvimo septike trukmė: kai septikas buvo švarus, o nuotekų išbuvimo trukmė trys paros, vidutinis SM šalinimo efektyvumas – 77±10 %, o BDS7 – 67±14 %; sumažinus nuotekų išbuvimo trukmę iki vienos paros, SM šalinimo efektyvumas sumažėjo iki 31±38 %, o BDS7 šalinimo efektyvumas buvo neigiamas.


Sign in / Sign up

Export Citation Format

Share Document