Isolation of immunogenic outer membrane proteins from Mannheimia haemolytica serotype 1 by use of selective extraction and immunoaffinity chromatography

2002 ◽  
Vol 63 (12) ◽  
pp. 1634-1640 ◽  
Author(s):  
Jerry K. McVicker ◽  
Louisa B. Tabatabai
2011 ◽  
Vol 18 (12) ◽  
pp. 2067-2074 ◽  
Author(s):  
Sahlu Ayalew ◽  
Binu Shrestha ◽  
Marie Montelongo ◽  
Amanda E. Wilson ◽  
Anthony W. Confer

ABSTRACTWe previously identifiedMannheimia haemolyticaouter membrane proteins (OMPs) that may be important immunogens by using immunoproteomic analyses. Genes for serotype 1-specific antigen (SSA-1), OmpA, OmpP2, and OmpD15 were cloned and expressed, and recombinant proteins were purified. Objective 1 of this study was to demonstrate immunogenicity of the four recombinant OMPs in mice and cattle. Objective 2 was to determine if the addition of individual recombinant OMPs or combinations of them would modify immune responsiveness of mice to the recombinant chimeric protein SAC89, containing the main epitope fromM. haemolyticaouter membrane lipoprotein PlpE and the neutralizing epitope ofM. haemolyticaleukotoxin. Mice vaccinated with recombinant OmpA (rOmpA), rSSA-1, rOmpD15, and rOmpP2 developed significant antibody responses toM. haemolyticaouter membranes and to the homologous recombinant OMP. Cattle vaccinated with rOmpA and rSSA-1 developed significant antibodies toM. haemolyticaouter membranes by day 28, whereas cattle vaccinated with rOmpD15 and rOmpP2 developed only minimal responses. Sera from cattle vaccinated with each of the recombinant proteins stimulated complement-mediated killing of the bacterium. Concurrent vaccination with SAC89 plus any of the four rOMPs singly resulted in increased endpoint anti-SAC89 titers, and for the SAC89/rSSA-1 vaccinees, the response was increased significantly. In contrast, the SAC89/P2/SSA-1 and SAC89/OmpA/P2/D15/SSA-1 combination vaccines resulted in significant decreases in anti-SAC89 antibodies compared to SAC89 vaccination alone. In conclusion, under the conditions of these experiments, vaccination of mice and cattle with rOmpA and rSSA-1 stimulated high antibody responses and may have protective vaccine potential.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Michael L. Clawson ◽  
Gennie Schuller ◽  
Aaron M. Dickey ◽  
James L. Bono ◽  
Robert W. Murray ◽  
...  

2016 ◽  
Vol 47 (1) ◽  
Author(s):  
Luisa Samaniego-Barrón ◽  
Sarahí Luna-Castro ◽  
Carolina Piña-Vázquez ◽  
Francisco Suárez-Güemes ◽  
Mireya de la Garza

Genome ◽  
2021 ◽  
Author(s):  
Emily L Wynn ◽  
Michael Clawson

Common bacterial causes of bovine respiratory disease (BRD) include Histophilus somni, Mannheimia haemolytica, and Pasteurella multocida. Within M. haemolytica, two major genotypes are commonly found in cattle (1 and 2), however, genotype 2 strains are isolated from diseased lungs much more frequently than genotype 1 strains. Outer membrane proteins (OMPs) of H. somni, P. multocida, and genotype 2 M. haemolytica may be important factors for acquired host immunity. Predicted OMP differences between genotype 1 and 2 M. haemolytica have been previously identified. In this study, we expanded that focus to include bovine-isolated strain genomes representing all three species and the two M. haemolytica genotypes. Reported here are the core genomes unique to each of them, core genomes shared between some or all combinations of the three species and two M. haemolytica genotypes, and predicted OMPs within these core genomes. The OMPs identified in this study are potential candidates for further study and the development of interventions against BRD.


2004 ◽  
Vol 72 (12) ◽  
pp. 7265-7274 ◽  
Author(s):  
Sahlu Ayalew ◽  
Anthony W. Confer ◽  
Emily R. Blackwood

ABSTRACT Mannheimia haemolytica serotype 1 (S1) is the most common bacterial isolate found in shipping fever pneumonia in beef cattle. Currently used vaccines against M. haemolytica do not provide complete protection against the disease. Research with M. haemolytica outer membrane proteins (OMPs) has shown that antibodies to one particular OMP from S1, PlpE, may be important in immunity. In a recently published work, members of our laboratory showed that recombinant PlpE (rPlpE) is highly immunogenic when injected subcutaneously into cattle and that the acquired immunity markedly enhanced resistance to experimental challenge (A. W. Confer, S. Ayalew, R. J. Panciera, M. Montelongo, L. C. Whitworth, and J. D. Hammer, Vaccine 21:2821-2829, 2003). The objective of this work was to identify epitopes of PlpE that are responsible for inducing the immune response. Western blot analysis of a series of rPlpE with nested deletions on both termini with bovine anti-PlpE hyperimmune sera showed that the immunodominant region is located close to the N terminus of PlpE. Fine epitope mapping, in which an array of overlapping 13-mer synthetic peptides attached to a derivatized cellulose membrane was probed with various affinity-purified anti-PlpE antibodies, identified eight highly reactive regions, of which region 2 (R2) was identified as the specific epitope. The R2 region is comprised of eight imperfect repeats of a hexapeptide (QAQNAP) and is located between residues 26 and 76. Complement-mediated bactericidal activity of affinity-purified anti-PlpE bovine antibodies confirmed that antibodies directed against the R2 region are effective in killing M. haemolytica.


Sign in / Sign up

Export Citation Format

Share Document