histophilus somni
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 45)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 12 (3) ◽  
pp. 710-720
Author(s):  
Seyda Cengiz ◽  
M. Cemal Adıgüzel ◽  
Gökçen Dinç

In this study, it was aimed to determine of P. multocida, M. haemolytica, H. somni and M. bovis in macroscopically healthy cattle lungs by PCR. The study was carried out on 82 macroscopically healthy cattle lung. DNA extraction was performed to the lung samples. PCR was then performed using all specific primers. By molecular evaluation, positive results  were achieved for  P. multocida,  M. haemolytica,  H. somni and  M. bovis in 4 (4.8 %), 4 (4.8 %), 6 (7.3 %) and 3 (3.6 %) of the samples, respectively. Mix infections were detected in five samples. Of the samples, two were positive for both P. multocida and M. haemolytica, two were positive for both M. haemolytica and H. somni and one was positive for both P. multocida and H. somni. However, a positive sample, which carried all of pathogens, was not detected. In conclusion, P. multocida, M. haemolytica, H. somni and M. bovis are the important opportunistic pathogens of respiratory tract in cattle and these pathogens have a major role during infections. But multifactorial nature of bovine respiratory disease and immune system affected the formation of the disease. Hence, firstly cattle’s immunity should be strengthened and other conditions should be kept under control.


Author(s):  
Gregory P. Harhay ◽  
Dayna M. Harhay ◽  
Kerry D. Brader ◽  
Timothy P. L. Smith

The genome biology underlying H. somni virulence, pathogenicity, environmental adaptability, and broad tissue tropism is understood poorly. We identified a novel H. somni 109-nt IVS stem-loop structure, of which the central portion is excised from the 23S rRNA transcript, resulting in the fragmentation of this rRNA in the H. somni isolate USDA-ARS-USMARC-63250 and the release of a 94-nt structured RNA of unknown function.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260292
Author(s):  
Sarah Depenbrock ◽  
Sharif Aly ◽  
John Wenz ◽  
Deniece Williams ◽  
Wagdy ElAshmawy ◽  
...  

Antimicrobial drug (AMD) use for bovine respiratory disease (BRD) continues to be concerning for development of antimicrobial resistance (AMR) in respiratory and enteric bacteria of cattle. This study aimed to provide data regarding AMR in respiratory isolates, and identify relationships between respiratory and enteric AMD susceptibility, in weaned dairy heifers. A cross-sectional study was performed between June of 2019 and February 2020, on 6 calf rearing facilities in California. Deep nasopharyngeal and rectal swabs were collected from 341 weaned heifers and submitted for selective bacterial culture and AMR testing. Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni were selectively isolated from respiratory samples; Escherichia coli and Enterococcus spp. were selectively isolated from rectal swabs. Minimum inhibitory concentrations (MIC) were determined for selected isolates against 19 AMD. The proportion of resistant isolates was calculated using Clinical Laboratory Standards Institute (respiratory) or USDA NARMS (enteric) breakpoints; when no applicable breakpoint was available, the distribution of MIC was described and compared. Association between AMR in a calf’s respiratory isolate and a higher or lower MIC of the matched enteric isolates was determined. More than 50% of P. multocida isolates were resistant to each of 7 AMD commonly used to treat BRD (florfenicol, gamithromycin, tildipirosin, tilmicosin, danofloxacin, enrofloxacin and tetracycline). Resistance in respiratory isolates was only associated with higher matched enteric MIC for gamithromycin and tulathromycin. Multidrug resistance was reported in >70% of P. multocida and M. haemolytica isolates. Antimicrobial resistance, including multidrug resistance, in respiratory isolates appears to be widespread in weaned dairy heifers; this finding has not previously been reported and raises concern for the future efficacy of AMD used to treat respiratory diseases in weaned dairy heifers. Enteric bacterial MIC appear to have limited direct association with respiratory isolate AMR classification.


2021 ◽  
Vol 8 ◽  
Author(s):  
Diego Nobrega ◽  
Sara Andres-Lasheras ◽  
Rahat Zaheer ◽  
Tim McAllister ◽  
Elizabeth Homerosky ◽  
...  

Here, we investigated the prevalence and risk factors for the presence of Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida in the respiratory tract of calves from the spring processing to the reprocessing at feedlots. Additionally, we characterized, phenotypically and genotypically, the antimicrobial resistance (AMR) profile of the four species. Calves from 22 cow–calf operations were enrolled in the study (n = 30 calves per operation) and sampled by deep nasopharyngeal swabs at three time points: spring processing, weaning, or induction into feedlots, and at reprocessing at the feedlot. Isolates were tested for susceptibility using the minimum inhibitory concentration (MIC) test against commonly administered antimicrobials. Additionally, a subset of isolates underwent whole-genome sequencing to infer presence of AMR genes and resistance determinants. Among studied pathogens, P. multocida was the most prevalent species, regardless of time point, followed by M. haemolytica, M. bovis, and H. somni. For M. bovis, a sharp increase in prevalence was detected at the reprocessing sampling, whereas for P. multocida, an increase in prevalence was observed at the weaning/induction sampling. Comingling and co-location of feedlots were not associated with prevalence of any respiratory pathogen. In terms of AMR, resistance against macrolides was prevalent in M. bovis, with most isolates resistant against tildipirosin, tilmicosin, and tylosin. In general, there was limited evidence to support an increase in resistance rates of respiratory bacteria from the spring processing to reprocessing at feedlots, with the exception of florfenicol resistance in M. bovis, which increased at reprocessing. Metaphylactic administration of tetracyclines at feedlot induction was not associated with the MIC of tetracyclines in any respiratory bacteria. Conversely, there were clear associations between the parenteral use of macrolides as metaphylaxis at the feedlot induction, and increased MIC against macrolides in P. multocida, M. haemolytica, and H. somni. Overall, the AMR phenotypes were corroborated by presence of AMR genes. We hypothesize that the administration of macrolides such as tulathromycin at feedlot induction contributes to historical changes in macrolides MIC data of respiratory bacteria of beef cattle.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Ana Pascual-Garrigos ◽  
Murali Kannan Maruthamuthu ◽  
Aaron Ault ◽  
Josiah Levi Davidson ◽  
Grigorii Rudakov ◽  
...  

AbstractThis work modifies a loop-mediated isothermal amplification (LAMP) assay to detect the bovine respiratory disease (BRD) bacterial pathogens Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in a colorimetric format on a farm. BRD causes a significant health and economic burden worldwide that partially stems from the challenges involved in determining the pathogens causing the disease. Methods such as polymerase chain reaction (PCR) have the potential to identify the causative pathogens but require lab equipment and extensive sample processing making the process lengthy and expensive. To combat this limitation, LAMP allows accurate pathogen detection in unprocessed samples by the naked eye allowing for potentially faster and more precise diagnostics on the farm. The assay developed here offers 66.7–100% analytical sensitivity, and 100% analytical specificity (using contrived samples) while providing 60–100% concordance with PCR results when tested on five steers in a feedlot. The use of a consumer-grade water bath enabled on-farm execution by collecting a nasal swab from cattle and provided a colorimetric result within 60 min. Such an assay holds the potential to provide rapid pen-side diagnostics to cattle producers and veterinarians.


2021 ◽  
Vol 8 ◽  
Author(s):  
Angela Fanelli ◽  
Margie Cirilli ◽  
Maria Stella Lucente ◽  
Aya Attia Koraney Zarea ◽  
Domenico Buonavoglia ◽  
...  

Mycoplasma bovis is increasingly recognized worldwide as an important cause of disease with major welfare and production impairments on cattle rearing. Although it was detected in veal calves and beef cattle, little is known on the infection impact and on its temporal morbidity pattern in Italian dairy herds. Thus, this study aimed to investigate the involvement of M. bovis on fatal calf pneumonia outbreaks that occurred during 2009–2019 in 64 Italian dairy farms. Furthermore, a deeper diagnostic workup of concurrent infection with other viral and bacterial respiratory pathogens was assessed. Out of the investigated fatal pneumonia cases, M. bovis was frequently detected (animal prevalence, 16.16%; 95%CI, 11.82–21.33; herd prevalence, 26.56; 95%CI, 16.29–39.08) either as the single agent of the disease in more than half of the positive samples (20/37) or in concurrent infections with Histophilus somni (9/37, 24.3%), Mannheimia haemolytica (6/37, 16.621%), Trueperella pyogenes (1/37, 2.70%), Pasteurella multocida (1/37, 2.70%), bovine respiratory syncytial virus (5/37, 13.51%), and bovine viral diarrhea virus (2/37, 5.55%). Based on time-series analysis, M. bovis was recorded in the area since 2009 with outbreaks displaying a clear morbidity seasonal pattern with peaks in April (43.21%) and in September (13.51%). This might be due to the stressing conditions during spring and late summer periods. Results of this study highlight that M. bovis infection warrants consideration, and control measures are needed given its involvement in lethal pneumonia outbreaks in dairy herds from an extended area.


Genome ◽  
2021 ◽  
Author(s):  
Emily L Wynn ◽  
Michael Clawson

Common bacterial causes of bovine respiratory disease (BRD) include Histophilus somni, Mannheimia haemolytica, and Pasteurella multocida. Within M. haemolytica, two major genotypes are commonly found in cattle (1 and 2), however, genotype 2 strains are isolated from diseased lungs much more frequently than genotype 1 strains. Outer membrane proteins (OMPs) of H. somni, P. multocida, and genotype 2 M. haemolytica may be important factors for acquired host immunity. Predicted OMP differences between genotype 1 and 2 M. haemolytica have been previously identified. In this study, we expanded that focus to include bovine-isolated strain genomes representing all three species and the two M. haemolytica genotypes. Reported here are the core genomes unique to each of them, core genomes shared between some or all combinations of the three species and two M. haemolytica genotypes, and predicted OMPs within these core genomes. The OMPs identified in this study are potential candidates for further study and the development of interventions against BRD.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Attila Dobos ◽  
Levente Szeredi ◽  
Mislav Kovačić ◽  
Dražen Đuričić ◽  
István Kiss ◽  
...  

In this research uterine swab and biopsy samples were collected from 40 infertile dairy cows kept at five dairy cattle farms in Hungary. Samples were tested for bacteria including Coxiella burnetii chlamydiae, Mycoplasma and Ureaplasma, and for the viruses Bovine herpesvirus 1 (BoHV-1) and Bovine viral diarrhoea virus (BVDV). Chlamydiaceae DNA was detected by real-time PCR in 22/40 (55%) samples. Coxiella burnetii DNA was detected in 3/40 (7.5%) cases by real-time PCR. Mycoplasma and Ureaplasma DNA was found in 2/40 (5%) and 4/40 (10%) cows, respectively. BVD and BoHV-1 DNA was not detected in any samples. Escherichia coli as a recognised uterine pathogen was found in two cases. The following potential uterine pathogens were found: Bacillus licheniformis (one case), non- haemolytic streptococci (five cases), Histophilus somni (two cases) and Candida krusei (two cases). Blood samples were collected at same time as swab samples from all 40 cows, and their examination for C. burnetii antibodies by ELISA revealed seropositivity in 26/40 cows (65%). Histological examination of the uterine biopsy samples showed the presence of mild lympho-histiocytic infiltration in the mucosain 22 cases (59%). Moderatelympho-histiocytic infiltration of the endometrium was evident in 13 cases (35%), while in two cases (6%) severe inflammatory cell infiltration of the endometrium with lympho-histiocytes and neutrophil granulocytes was found. Although no statistical correlation could be demonstrated between the severity of histological lesions of the endometrium and the uterine pathogenicity of the bacteria (P = 0.8555), endometritis of a certain severity grade and/or a recognised or potential uterine pathogen were found in all samples. The latter may play a role in the development of infertility either collectively or independently.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sara Andrés-Lasheras ◽  
Reuben Ha ◽  
Rahat Zaheer ◽  
Catrione Lee ◽  
Calvin W. Booker ◽  
...  

A broad, cross-sectional study of beef cattle at entry into Canadian feedlots investigated the prevalence and epidemiology of antimicrobial resistance (AMR) in Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, bacterial members of the bovine respiratory disease (BRD) complex. Upon feedlot arrival and before antimicrobials were administered at the feedlot, deep nasopharyngeal swabs were collected from 2,824 feedlot cattle in southern and central Alberta, Canada. Data on the date of feedlot arrival, cattle type (beef, dairy), sex (heifer, bull, steer), weight (kg), age class (calf, yearling), source (ranch direct, auction barn, backgrounding operations), risk of developing BRD (high, low), and weather conditions at arrival (temperature, precipitation, and estimated wind speed) were obtained. Mannheimia haemolytica, P. multocida, and H. somni isolates with multidrug-resistant (MDR) profiles associated with the presence of integrative and conjugative elements were isolated more often from dairy-type than from beef-type cattle. Our results showed that beef-type cattle from backgrounding operations presented higher odds of AMR bacteria as compared to auction-derived calves. Oxytetracycline resistance was the most frequently observed resistance across all Pasteurellaceae species and cattle types. Mycoplasma bovis exhibited high macrolide minimum inhibitory concentrations in both cattle types. Whether these MDR isolates establish and persist within the feedlot environment, requires further evaluation.


Sign in / Sign up

Export Citation Format

Share Document