nested deletions
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 118 (51) ◽  
pp. e2117557118
Author(s):  
Janet H. T. Song ◽  
Rachel L. Grant ◽  
Veronica C. Behrens ◽  
Marek Kučka ◽  
Garrett A. Roberts Kingman ◽  
...  

Complete genome sequencing has identified millions of DNA changes that differ between humans and chimpanzees. Although a subset of these changes likely underlies important phenotypic differences between humans and chimpanzees, it is currently difficult to distinguish causal from incidental changes and to map specific phenotypes to particular genome locations. To facilitate further genetic study of human–chimpanzee divergence, we have generated human and chimpanzee autotetraploids and allotetraploids by fusing induced pluripotent stem cells (iPSCs) of each species. The resulting tetraploid iPSCs can be stably maintained and retain the ability to differentiate along ectoderm, mesoderm, and endoderm lineages. RNA sequencing identifies thousands of genes whose expression differs between humans and chimpanzees when assessed in single-species diploid or autotetraploid iPSCs. Analysis of gene expression patterns in interspecific allotetraploid iPSCs shows that human–chimpanzee expression differences arise from substantial contributions of both cis-acting changes linked to the genes themselves and trans-acting changes elsewhere in the genome. To enable further genetic mapping of species differences, we tested chemical treatments for stimulating genome-wide mitotic recombination between human and chimpanzee chromosomes, and CRISPR methods for inducing species-specific changes on particular chromosomes in allotetraploid cells. We successfully generated derivative cells with nested deletions or interspecific recombination on the X chromosome. These studies confirm an important role for the X chromosome in trans regulation of expression differences between species and illustrate the potential of this system for more detailed cis and trans mapping of the molecular basis of human and chimpanzee evolution.


2010 ◽  
Vol 192 (19) ◽  
pp. 5151-5164 ◽  
Author(s):  
N. McCallum ◽  
J. Hinds ◽  
M. Ender ◽  
B. Berger-Bächi ◽  
P. Stutzmann Meier

ABSTRACT Transcription of spa, encoding the virulence factor protein A in Staphylococcus aureus, is tightly controlled by a complex regulatory network, ensuring its temporal expression over growth and at appropriate stages of the infection process. Transcriptomic profiling of XdrA, a DNA-binding protein that is conserved in all S. aureus genomes and shares similarity with the XRE family of helix-turn-helix, antitoxin-like proteins, revealed it to be a previously unidentified activator of spa transcription. To assess how XdrA fits into the complex web of spa regulation, a series of regulatory mutants were constructed; consisting of single, double, triple, and quadruple mutants lacking XdrA and/or the three key regulators previously shown to influence spa transcription directly (SarS, SarA, and RNAIII). A series of lacZ reporter gene fusions containing nested deletions of the spa promoter identified regions influenced by XdrA and the other three regulators. XdrA had almost as strong an activating effect on spa as SarS and acted on the same spa operator regions as SarS, or closely overlapping regions. All data from microarrays, Northern and Western blot analyses, and reporter gene fusion experiments indicated that XdrA is a major activator of spa expression that appears to act directly on the spa promoter and not through previously characterized regulators.


2007 ◽  
Vol 189 (13) ◽  
pp. 4662-4670 ◽  
Author(s):  
Hema Vakharia-Rao ◽  
Kyle A. Kastead ◽  
Marina I. Savenkova ◽  
Charles M. Bulathsinghala ◽  
Kathleen Postle

ABSTRACT The active transport of iron siderophores and vitamin B12 across the outer membrane (OM) of Escherichia coli requires OM transporters and the potential energy of the cytoplasmic membrane (CM) proton gradient and CM proteins TonB, ExbB, and ExbD. A region at the amino terminus of the transporter, called the TonB box, directly interacts with TonB Q160 region residues. R158 and R166 in the TonB Q160 region were proposed to play important roles in cocrystal structures of the TonB carboxy terminus with OM transporters BtuB and FhuA. In contrast to predictions based on the crystal structures, none of the single, double, or triple alanyl substitutions at arginyl residues significantly decreased TonB activity. Even the quadruple R154A R158A R166A R171A mutant TonB still retained 30% of wild-type activity. Up to five residues centered on TonB Q160 could be deleted without inactivating TonB or preventing its association with the OM. TonB mutant proteins with nested deletions of 7, 9, or 11 residues centered on TonB Q160 were inactive and appeared never to have associated with the OM. Because the 7-residue-deletion mutant protein (TonBΔ7, lacking residues S157 to Y163) could still form disulfide-linked dimers when combined with W213C or F202C in the TonB carboxy terminus, the TonBΔ7 deletion did not prevent necessary energy-dependent conformational changes that occur in the CM. Thus, it appeared that initial contact with the OM is made through TonB residues S157 to Y163. It is hypothesized that the TonB Q160 region may be part of a large disordered region required to span the periplasm and contact an OM transporter.


2005 ◽  
Vol 187 (2) ◽  
pp. 488-497 ◽  
Author(s):  
Dieter Knowle ◽  
Robert E. Lintner ◽  
Yara M. Touma ◽  
Robert M. Blumenthal

ABSTRACT A widely distributed family of small regulators, called C proteins, controls a subset of restriction-modification systems. The C proteins studied to date activate transcription of their own genes and that of downstream endonuclease genes; this arrangement appears to delay endonuclease expression relative to that of the protective methyltransferase when the genes enter a new cell. C proteins bind to conserved sequences called C boxes. In the PvuII system, the C boxes have been reported to extend from −23 to +3 relative to the transcription start for the gene for the C protein, an unexpected starting position relative to a bound activator. This study suggests that transcript initiation within the C boxes represents initial, C-independent transcription of pvuIICR. The major C protein-dependent transcript appears to be a leaderless mRNA starting farther downstream, at the initiation codon for the pvuIIC gene. This conclusion is based on nuclease S1 transcript mapping and the effects of a series of nested deletions in the promoter region. Furthermore, replacing the region upstream of the pvuIIC initiation codon with a library of random oligonucleotides, followed by selection for C-dependent transcription, yielded clones having sequences that resemble −10 promoter hexamers. The −35 hexamer of this promoter would lie within the C boxes. However, the spacing between C boxes/−35 and the apparent −10 hexamer can be varied by ±4 bp with little effect. This suggests that, like some other activator-dependent promoters, PpvuIICR may not require a −35 hexamer. Features of this transcription activation system suggest explanations for its broad host range.


2004 ◽  
Vol 72 (12) ◽  
pp. 7265-7274 ◽  
Author(s):  
Sahlu Ayalew ◽  
Anthony W. Confer ◽  
Emily R. Blackwood

ABSTRACT Mannheimia haemolytica serotype 1 (S1) is the most common bacterial isolate found in shipping fever pneumonia in beef cattle. Currently used vaccines against M. haemolytica do not provide complete protection against the disease. Research with M. haemolytica outer membrane proteins (OMPs) has shown that antibodies to one particular OMP from S1, PlpE, may be important in immunity. In a recently published work, members of our laboratory showed that recombinant PlpE (rPlpE) is highly immunogenic when injected subcutaneously into cattle and that the acquired immunity markedly enhanced resistance to experimental challenge (A. W. Confer, S. Ayalew, R. J. Panciera, M. Montelongo, L. C. Whitworth, and J. D. Hammer, Vaccine 21:2821-2829, 2003). The objective of this work was to identify epitopes of PlpE that are responsible for inducing the immune response. Western blot analysis of a series of rPlpE with nested deletions on both termini with bovine anti-PlpE hyperimmune sera showed that the immunodominant region is located close to the N terminus of PlpE. Fine epitope mapping, in which an array of overlapping 13-mer synthetic peptides attached to a derivatized cellulose membrane was probed with various affinity-purified anti-PlpE antibodies, identified eight highly reactive regions, of which region 2 (R2) was identified as the specific epitope. The R2 region is comprised of eight imperfect repeats of a hexapeptide (QAQNAP) and is located between residues 26 and 76. Complement-mediated bactericidal activity of affinity-purified anti-PlpE bovine antibodies confirmed that antibodies directed against the R2 region are effective in killing M. haemolytica.


BioTechniques ◽  
2002 ◽  
Vol 33 (2) ◽  
pp. 310-315
Author(s):  
Jonathan J. Dennis ◽  
Gerben J. Zylstra

2001 ◽  
Vol 183 (19) ◽  
pp. 5535-5543 ◽  
Author(s):  
Sally A. Turner ◽  
Shelley N. Luck ◽  
Harry Sakellaris ◽  
Kumar Rajakumar ◽  
Ben Adler

ABSTRACT In this study, we determined the boundaries of a 99-kb deletable element of Shigella flexneri 2a strain YSH6000. The element, designated the multiple-antibiotic resistance deletable element (MRDE), had recently been found to contain a 66-kb pathogenicity island (PAI)-like element (designated the SRL PAI) which carries the Shigella resistance locus (SRL), encoding resistance determinants to streptomycin, ampicillin, chloramphenicol, and tetracycline. The YSH6000 MRDE was found to be flanked by two identical IS91 elements present at the S. flexneri homologs of the Escherichia coli genesputA and mdoA on NotI fragment D. Sequence data from two YSH6000-derived MRDE deletants, YSH6000T and S2430, revealed that deletion of the MRDE occurred between the two flanking IS91 elements, resulting in a single IS91 element spanning the two original IS91 loci. Selection for the loss of tetracycline resistance confirmed that the MRDE deletion occurred reproducibly from the same chromosomal site and also showed that the SRL PAI and the SRL itself were capable of independent deletion from the chromosome, thus revealing a unique set of nested deletions. The excision frequency of the SRL PAI was estimated to be 10−5 per cell in the wild type, and mutation of a P4-like integrase gene (int) at the left end of the SRL PAI revealed that int mediates precise deletion of the PAI.


Sign in / Sign up

Export Citation Format

Share Document