immunoaffinity chromatography
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 18)

H-INDEX

44
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5101
Author(s):  
Wiebke Derz ◽  
Melita Fleischmann ◽  
Paul W. Elsinghorst

Molecularly imprinted polymers (MIP) combine the selectivity of immunoaffinity chromatography with the robustness of common solid-phase extraction in what is referred to as molecularly imprinted solid-phase extraction (MISPE). This contribution shows how MIP design may be guided by pharmacophore modeling for the example of citrinin, which is an emerging mycotoxin from cereals. The obtained pharmacophore model allowed searching public databases for a set of citrinin-mimicking molecular surrogates. Imprinted and non-imprinted polymers were subsequently obtained through bulk and core-shell polymerization in the presence of these surrogates. Evaluation of their binding ability for citrinin and structurally related ochratoxin A revealed a promising MIP derived from rhodizonic acid. A protocol for MISPE of citrinin from cereals was subsequently developed and compared to immunoaffinity chromatography with respect to clean-up efficiency and recovery.


Author(s):  
Hyuk-Mi Lee ◽  
Hwan-Goo Kang

AbstractTo develop a new simple and simultaneous purification method for mycotoxins in feeds and grains, magnetic nanoparticles (MNPs) conjugated with monoclonal antibodies (mAbs) against mycotoxins were used to separate aflatoxin B1 (AFB1), zearalenone (ZEA) and deoxynivalenol (DON). For a single spike of each mycotoxin into the buffer solution (16% MeOH in PBS), mean recoveries were 93.1–95.0% for AFB1 (5–20 ng/mL spiked), 87.2–96.0% for ZEA (125–500 ng/mL spiked) and 75.2–96.9% for DON (250–1,000 ng/mL spiked) by HPLC and ELISA. Recoveries of AFB1 (20 ng/mL) and ZEA (500 ng/mL) simultaneously spiked into the buffer solution were 87.0 and 99.8%, respectively. Recovery rates of AFB1/DON and DON/ZEA spiked simultaneously were 86.2%/76.6% and 92.0%/86.7%, respectively, at concentrations of 20 ng/mL AFB1, 500 ng/mL ZEA, and 1,000 ng/mL DON. Recoveries using the novel mAb–MNP conjugated system in a buffer solution simultaneously spiked with AFB1, ZEA and DON were 82.5, 94.6 and 73.4%, respectively. Recoveries of DON in animal feed were 107.7–132.5% at concentrations of 250–1,000 ng/g spiked in feed. The immunoaffinity chromatography (IAC) clean-up method was compared with the purification method using novel mAb–MNP. After fortification of animal feed with AFB1 (5, 10 and 20 ng/g feed) and ZEA (125, 250 and 500 ng/g feed), AFB1 and ZEA were purified using both the methods. In the case of the novel mAb-MNP conjugated system, mean recoveries for AFB1 were 89.4, 73.1 and 88.3% at concentrations of 5, 10 and 20 ng/g feed, respectively. For ZEA, mean recoveries were 86.7, 85.9 and 79.1% at concentrations of 125, 250 and 500 ng/g, respectively. For IAC purification, recoveries were 42.9–45.1% for AFB1 and 96.8–103.2% for ZEA. In conclusion, the present purification method using monoclonal antibodies conjugated to MNPs can be used for simple and simultaneous purification of mycotoxins from feed and maize.


2020 ◽  
Vol 20 (1) ◽  
pp. 289-304
Author(s):  
Theo Sturm ◽  
Benedikt Sautter ◽  
Tobias P. Wörner ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee ◽  
...  

10.2196/15690 ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. e15690
Author(s):  
Michael Eisenhut

Background Antibodies to blood stages protective against complications of Plasmodium falciparum infection were found to be of immunoglobulin G 1 (IgG1) and IgG3 subclasses and of high affinity to the target epitopes. These target epitopes cannot be characterized using recombinant antigens because of a lack of appropriate glycosylation, phosphorylation, methylation, and bisulfide bond formation, which determine the structure of conformational and nonlinear epitopes within the tertiary and quaternary structures of native P. falciparum antigens. Objective This study aims to develop a method for the comprehensive detection of all P. falciparum schizont antigens, eliciting a protective immune response. Methods Purified parasitophorous vacuole membrane–enclosed merozoite structures (PEMSs) containing native schizont antigens are initially generated, separated by two-dimensional (2D) gel electrophoresis and blotted onto nitrocellulose. Antigens eliciting a protective antibody response are visualized by incubation with sera from patients with clinical immunity. This is followed by the elution of low-affinity antibodies with urea and detection of protective antibody responses by incubation with anti-IgG1 and anti-IgG3 antibodies, which were conjugated to horseradish peroxidase. This is followed by visualization with a color reaction. Blot signals are normalized by relating to the intensity of blot staining with a reference antibody and housekeeping antigens. Results are corrected for intensity of exposure by the relation of antibody responses to global P. falciparum antibody titers. Antigens eliciting the protective responses are identified as immunorelevant from the comparison of spot positions, indicating high-affinity IgG1 or IgG3 responses on the western blot, which is unique to or consistently more intensive in clinically immune individuals compared with nonimmune individuals. The results obtained are validated by using affinity chromatography. Results Another group previously applied 2D western blotting to analyze antibody responses to P. falciparum. The sera of patients allowed the detection of 42 antigenic spots on the 2D immunoblot. The spots detected were excised and subjected to mass spectrometry for identification. A total of 19 protein spots were successfully identified and corresponded to 13 distinct proteins. Another group used immunoaffinity chromatography to identify antigens bound by IgGs produced by mice with enhanced immunity to Plasmodium yoelii. Immunorelevant antigens were isolated and identified by immobilizing immunoglobulin from immune mice to a Sephadex column and then passing a blood-stage antigen mixture through the column followed by the elution of specific bound antigens with sodium deoxycholate and the identification of those antigens by western blotting with specific antibodies. Conclusions 2D western blotting using native antigens has the potential to identify antibody responses selective for specific defined isomeric forms of the same protein, including isoforms (protein species) generated by posttranscriptional modifications such as phosphorylation, glycosylation, and methylation. The process involved in 2D western blotting enables highly sensitive detection, high resolution, and preservation of antibody responses during blotting. Validation by immunoaffinity chromatography can compensate for the antigen loss associated with the blotting process. It has the potential for indirect quantification of protective antibody responses by enabling quantification of the amount of eluted antibody bound antigens through mass spectrometry. International Registered Report Identifier (IRRID) PRR1-10.2196/15690


Sign in / Sign up

Export Citation Format

Share Document