scholarly journals Wet surface treatment of magnesium alloys and corrosion evaluation

2010 ◽  
Vol 60 (3) ◽  
pp. 142-149
Author(s):  
Masazumi Okido
2015 ◽  
Vol 60 (2) ◽  
pp. 1031-1035 ◽  
Author(s):  
J. Smolik ◽  
A. Mazurkiewicz ◽  
J. Kacprzyńska-Gołacka ◽  
M. Rydzewski ◽  
M. Szota ◽  
...  

Abstract Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS), arc evaporation (AE) and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB) method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.


2007 ◽  
Vol 551-552 ◽  
pp. 169-172
Author(s):  
Yan Dong Yu ◽  
C.W. Wang

Influence of surface treatment to diffusion bonding before joining was analyzed during the process of magnesium alloys diffusion bonding. We processed diffusion bonding by using ZK60 rolling superplasticity magnesium alloy sheets with thickness 1.5mm and grain size 8.9$m. Joint was carried out ageing strengthening by experiment study to increase its shearing strength. Ageing strengthening performance was researched under ageing temperature 150-190 °C and the ageing time 6-48h. The results showed: diffusion bonding joints’ shearing strength had enhanced in some degrees and reached 86% of basal strength when the ageing temperature is 160 °C and the ageing time is 24h. It showed that the magnesium alloy joint’s strength could be greatly improved by ageing strengthening.


Sign in / Sign up

Export Citation Format

Share Document