ageing temperature
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
RABIA MUKHTAR ◽  
NAVEED AFZAL ◽  
MOHSIN RAFIQUE ◽  
AMEEQ FAROOQ

Artificial ageing of Al-7075 alloy was performed in a muffle furnace at different temperatures ranging from 120∘C to 190∘C for 3[Formula: see text]h. The formation of MgZn2 precipitates in the aged alloy was confirmed through the XRD data. The lattice parameter and crystallite size of aluminum were increased with the increase of the ageing temperature. The scanning electron microscopy results validated the precipitates of different shapes and sizes in the aged samples. The number density of the precipitates was found to be maximum at 170∘C. The Vickers hardness of Al-7075 alloy was increased from 125[Formula: see text]HV to 172[Formula: see text]HV with an increase of the ageing temperature from 120∘C to 170∘C and then decreased at 190∘C. The electrochemical tests of the un-aged and aged samples (in 3.5[Formula: see text]wt.% NaCl solution) showed a decrease in the corrosion rate (0.003[Formula: see text]mm/y) and an increase in the corrosion potential ([Formula: see text]137[Formula: see text]mV) of the alloy upon ageing up to 150∘C, indicating improvement in its corrosion resistance.


2021 ◽  
Vol 904 ◽  
pp. 124-130
Author(s):  
Si Yang Xu ◽  
Ying Long Li ◽  
Mu Xin Zhang ◽  
Yi Fu Jiang ◽  
Hua Ding

Due to its high strength, excellent electrical conductivity and high resistance to stress corrosion, Cu-Ni-Sn alloy has been selected as a kind of advanced metal material which can be used as the manufacture of springs, connectors, bearings and so on. In addition, the addition of Nb can efficiently improve the comprehensive properties of the alloy. In the present work, the effect of heat treatment conditions on microstructure and mechanical properties were studied in a Cu-9Ni-6Sn-0.22Nb alloy by means of optical microscopy (OM), transmission electron microscopy (TEM), tensile test and microhardness tests. The results show that before ageing, a large number of fine γ precipitates with DO22 type structure are distributed on the matrix. With the prolongation of ageing time, the ultimate tensile strength (UTS), yield strength (YS) and Vickers hardness increased firstly, and then decline. The reason can be attributed to the occurrence of spinodal decomposition and the formation of discontinuous precipitation (DP). At first, spinodal decomposition induced the enhanced interaction between dislocations and internal stress field, resulting in an increase of mechanical properties. Then the increased DP at grain boundaries leads to the decline of strength in the material. Finally, the relationship between the microstructure and the electrical conductivity was also analyzed, and the results show that the electrical conductivity increased with ageing time/ageing temperature increasing for the present alloy. Through the analysis of Matthiessen’ s rule, the variation of electrical resistivity depends on precipitates, solute atoms, dislocations, vacancies and grain boundaries, and the precipitates play an important role among them. Besides, more precipitates improve electrical conductivity. Therefore, the increase of ageing time/ageing temperature induced the increase of DP, resulting in an increase of electrical conductivity.


2021 ◽  
Vol 27 (3) ◽  
pp. 122-126
Author(s):  
Giulia Stornelli ◽  
Damiano Gaggia ◽  
Marco Rallini ◽  
Andrea Di Schino

Laser Powder Bed Fusion (L-PBF) is a widespread additive manufacturing technology in industrial applications, for metal components manufacturing. Maraging steel is a special class of Fe-Ni alloys, typically used in the aerospace and tooling sectors due to their good combination of mechanical strength and toughness. This work analyses the heat treatment effect on the microstructure and hardness value of 300-grade maraging steel manufactured by the L-PBF process. The considered heat treatment consists of a solution annealing treatment followed by quenching and ageing hardening treatment. The effect of ageing temperature is reported, in a wide temperature range. Results show that solution annealing treatment fully dissolves the solidification structure caused by the L-PBF process. Moreover, the ageing hardening treatment has a significant impact on the hardness, hence on strength, of L-PBF maraging steel. The optimal ageing conditions for the L-PBF maraging steel are identified and reported: in particular, results show that the hardness of 583 HV is achieved following ageing treatment at 490 °C for 6 hours. A higher treatment temperature leads to over-ageing resulting in a decrease of hardness. Conversely, an excessive ageing time does not seem to affect the hardness value, for the ageing temperature of 490 °C.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 937
Author(s):  
Tonica Bončina ◽  
Mihaela Albu ◽  
Franc Zupanič

In this work, the ageing of some Al-Mn-Cu-Be alloys was investigated in the temperature range in which predominantly icosahedral quasicrystalline (IQC) precipitates can form. The alloys were cast into a copper mould, directly aged (T5 heat treatment) between 300 and 440 °C for different times. Afterwards, they were examined using scanning and transmission electron microscopy, X-ray diffraction and hardness testing. The main aim of the work was to determine the conditions at which a high number density of spherical icosahedral quasicrystalline precipitates can form. The highest number density of IQC precipitates was obtained at 300 °C after prolonged ageing. The spheroidal precipitates had a diameter less than 20 nm. The size of IQC precipitates increased with the increasing temperature, and in addition, decagonal quasicrystalline precipitates appeared. The time to maximum hardness decreased strongly with increasing ageing temperature. The IQC precipitates can form in a fairly broad temperature range in Al-Mn-Cu-Be alloys and that by varying ageing temperature and duration, rather different distributions of precipitates can be obtained. The presence of precipitates caused rather strong aluminium alloys and fast work hardening during initial plastic deformation.


2020 ◽  
Vol 823 ◽  
pp. 153792 ◽  
Author(s):  
Yan Zou ◽  
Lingfei Cao ◽  
Xiaodong Wu ◽  
Yichang Wang ◽  
Xuan Sun ◽  
...  

Materialia ◽  
2020 ◽  
Vol 9 ◽  
pp. 100610 ◽  
Author(s):  
Baptiste Rouxel ◽  
Mahendra Ramajayam ◽  
Timothy J. Langan ◽  
Justin Lamb ◽  
Paul G. Sanders ◽  
...  
Keyword(s):  

2019 ◽  
pp. 83-95
Author(s):  
Chatkamol Kaewbuddee ◽  
Narong Chanlek ◽  
Kitirote Wantala

The objective of this study was to optimize synthesis conditions for the Cu-K-OMS-2 hydrothermal process. The effects of ageing temperature, ageing time and amount of copper (Cu) dopant were considered via using the Box-Behnken design (BBD) method to characterize the conditions for gaseous toluene degradation. In the models studied, the independent variables were ageing temperature (55-145ºC), ageing time (6-18 h) and amount of Cu dopant (2-6% mole). The quadratic model fitted very well with the experimental data (15 runs), which showed a higher value of R2 (0.98) and adjusted R2 (0.95), confirming that the model can explain the results successfully. Ageing temperature was found to be the only significant variable for the Cu-K-OMS-2 transformation phase, with CuO and the bixbyite phase appearing as the highest ageing temperature condition. Furthermore, the effects of ageing temperature, ageing time and amount of Cu dopant on the Cu3+/Cu2+ mole ratio were also investigated. Ageing temperature and amount of Cu dopant displayed a significant effect on both toluene removal and the Cu3+/Cu2+ mole ratio. On the other hand, ageing time was not significant for both responses. The high Cu3+/Cu2+ mole ratio led to enhancement of toluene removal. The optimized conditions for Cu-K-OMS-2 synthesis were determined as 120ºC of ageing temperature, 6 h of ageing time and 6% by mole of Cu on K-OMS-2, which removed 80% of toluene at a reaction temperature of 180ºC.


2019 ◽  
Vol 19 (6) ◽  
pp. 414-420 ◽  
Author(s):  
M. R. Agliullin ◽  
Z. R. Khairullina ◽  
R. Z. Kuvatova ◽  
B. I. Kutepov

The influence of temperature of ageing of the initial silicoaluminophosphate gel on crystallization of the molecular sieve SAPO-11 was studied. It was established that with pseudoboehmite used as the source of aluminum, a gel containing di-n-propylamine phosphate, non-dissolved pseudoboehmite and amorphous silicoaluminophosphate was formed. Elevation of the gel ageing temperature from 25 to 90 °C was shown to result in an increase in the proportion of the amorphous phase in the gel. Crystallization of the silicoalumophosphate gel at 90 °C allowed SAPO-11 to be crystallized at high phase purity and close to 98 % crystallinity. A high activity and selectivity (86 %) of SAPO-11 to linear dimmers was observed during dimerization of α-methylstirene.


Sign in / Sign up

Export Citation Format

Share Document