Influence of Diffusion Bonding for Superplasticity Magnesium Alloys with the Fore and Post Treatment

2007 ◽  
Vol 551-552 ◽  
pp. 169-172
Author(s):  
Yan Dong Yu ◽  
C.W. Wang

Influence of surface treatment to diffusion bonding before joining was analyzed during the process of magnesium alloys diffusion bonding. We processed diffusion bonding by using ZK60 rolling superplasticity magnesium alloy sheets with thickness 1.5mm and grain size 8.9$m. Joint was carried out ageing strengthening by experiment study to increase its shearing strength. Ageing strengthening performance was researched under ageing temperature 150-190 °C and the ageing time 6-48h. The results showed: diffusion bonding joints’ shearing strength had enhanced in some degrees and reached 86% of basal strength when the ageing temperature is 160 °C and the ageing time is 24h. It showed that the magnesium alloy joint’s strength could be greatly improved by ageing strengthening.

2013 ◽  
Vol 788 ◽  
pp. 34-37
Author(s):  
Fei Lin ◽  
Jie Li ◽  
Hong Wei Zhao ◽  
Zhi Tong Chen ◽  
Qing Sen Meng

Vacuum diffusion bonding of as-extruded AZ61 magnesium alloy was investigated according to atomic diffusion theory. The effects of the diffusion temperature and holding time on the quality of the bonding joint are investigated by means of microstructure analysis, shearing strength test and microhardness testing. The shearing test results showed that the maximum shearing strength reached 51.95MPa with the temperature of 470°C and the holding time of 90min. And the diffusion temperature and holding time have a great effect on the quality of the bonding joints. The microhardness measurement results showed that the microhardness value at the bonding joint was maximum.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2009 ◽  
Vol 610-613 ◽  
pp. 826-830
Author(s):  
Tian Mo Liu ◽  
Wei Hui Hu ◽  
Qing Liu

The microstructures and mechanical properties of cold upsetting magnesium alloys were investigated upon anneal under different conditions. The results show that a large amount of twins were observed in the original grains of cold upsetting AZ31 magnesium alloys. The twins disappeared gradually and recrystal grains formed after anneal. The volume fraction of the recrystal grains increases as the strain of samples rises. Recrystal grain size grows large with the elevated annealing temperature. Recrystal grain size reduces at first and then grows as the annealing time is prolonged. In addition, compared with as-cast magnesium alloys, the yield strength of cold upsetting samples increase apparently due to grain refinement after anneals.


2007 ◽  
Vol 551-552 ◽  
pp. 241-244
Author(s):  
Yan Dong Yu ◽  
C.W. Wang ◽  
D.L. Yin

A new SPF/DB technology using gasification agent as pressurization mediator was proposed in this paper. The forming principle of SPF/DB using the agent was represented. Dies used for the forming process was designed and manufactured, and new gasification agent N11 which is white solid powder at normal temperature and it is easy to encapsulate and keep was developed for magnesium alloy. ZK60 magnesium alloy with a thickness of 1mm and grain size of 7.9μm was selected to conduct the experiment of SPF/DB. Corrugated ZK60 magnesium alloy parts were well formed under the temperature between 653K and 673K and forming time of 50 minutes. SEM was used to observe the microstructures of the diffusion bonding joints. The result shows that the joints were well bonded.


2011 ◽  
Vol 311-313 ◽  
pp. 583-586
Author(s):  
Xiu Zhi Zhang ◽  
Ying Jie Li ◽  
Yi Shuai Zhang

In this paper, the effect of heat treatment and strain rate on the tensile property of extruding magnesium alloys 1Mn1Zn4Y is studied by using tensile tests. It can be concluded that because the grain size of the sample with solid solution (T4) is coarser than that of the sample without heat treatment,the elongation and the strength of the specimen treated with solid solution are lower. However, owing to many fine and dispersed particles of the second phase precipitated from the solid solution, the strength of sample treated with solid solution + aging (T6) is the highest.


2013 ◽  
Vol 753-755 ◽  
pp. 191-194
Author(s):  
Bao Zhi Xie

Microstructure evolution and mechanical properties of AZ91D magnesium alloys which was processed by EX-ECAP at 473K were investigated in this study. Microstructural inspection showed that the EX-ECAP was effective in refine grain size of the alloy. Tensile testing at room temperature showed that the ductility, strength and hardness of the alloy have been significantly increased by EX-ECAP. The alloy exhibited excellent superplastic properties in the form of the maximum elongation of ~218% at 473K using an initial strain rate of 3×10-4s-1.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 644
Author(s):  
Wenyan Zhang ◽  
Hua Zhang ◽  
Lifei Wang ◽  
Jianfeng Fan ◽  
Xia Li ◽  
...  

AZ31 magnesium alloy sheets were prepared by low-speed extrusion at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The microstructure evolution and mechanical properties of extruded AZ31 magnesium alloy sheets were studied. Results indicate that the low-speed extrusion obviously improved the microstructure of magnesium alloys. As the extrusion temperature decreased, the grain size for the produced AZ31 magnesium alloy sheets decreased, and the (0001) basal texture intensity of the extruded sheets increased. The yield strength and tensile strength of the extruded sheets greatly increased as the extrusion temperature decreased. The AZ31 magnesium alloy sheet prepared by low-speed extrusion at 350 °C exhibited the finest grain size and the best mechanical properties. The average grain size, yield strength, tensile strength, and elongation of the extruded sheet prepared by low-speed extrusion at 350 °C were ~2.7 μm, ~226 MPa, ~353 MPa, and ~16.7%, respectively. These properties indicate the excellent mechanical properties of the extruded sheets prepared by low-speed extrusion. The grain refinement effect and mechanical properties of the extruded sheets produced in this work were obviously superior to those of magnesium alloys prepared using traditional extrusion or rolling methods reported in other related studies.


2018 ◽  
Vol 7 (3.17) ◽  
pp. 94 ◽  
Author(s):  
Amir Hossein Baghdadi ◽  
Nor Fazilah Mohamad Selamat ◽  
Zainuddin Sajuri ◽  
Amir Hossein Kokabi

Weight reduction is one of the most concerning issues of automotive and aircraft industries in reducing fuel consumption. Magnesium (Mg) alloys are the lightest alloys which can be used in the structure due to low density and high strength to weight ratio. Developing a reliable joining process of magnesium alloys is required due to limited ductility and low workability at room temperature. Friction stir welding (FSW) is a solid-state welding process that can be performed to produce sound joints in magnesium alloys. Researchers have performed investigations on the effect of rotation and travel speeds in FSW of AZ31B magnesium alloy. However, there is lack of study on the FSW parameters, i.e. travel speed below 50 mm/min and rotation speed lower than 1000 rpm. In this research, FSW of AZ31B magnesium alloy was performed at a constant rotation speed of 700 rpm and varied travel speeds below 50 mm/min. The results showed the development of finer grain size in stir zone with increasing of welding travel speed from 20 mm/min to 40 mm/min. It was found that the finer grain size improved the mechanical properties while maintaining the elongation at different welding parameters.  


Sign in / Sign up

Export Citation Format

Share Document