scholarly journals Biaxial tensile deformation simulation of 5000 series aluminum alloy sheet using crystal plasticity finite element method based on homogenization method and its experimental validation

2015 ◽  
Vol 65 (5) ◽  
pp. 196-203 ◽  
Author(s):  
Keisuke Hashimoto ◽  
Akinori Yamanaka ◽  
Junpei Kawaguchi ◽  
Takeo Sakurai ◽  
Toshihiko Kuwabara
2018 ◽  
Vol 920 ◽  
pp. 187-192
Author(s):  
Akinori Yamanaka ◽  
Natsuki Nemoto ◽  
Toshihiko Kuwabara

This paper presents the results of the numerical multi-axial material tests for predicting elastoplastic deformation behavior of aluminum alloy sheets under equi-biaxial tension and in-plane tension-compression stress states. In this study, we have performed the numerical biaxial tensile and tension-compression tests of a 5000-series aluminum alloy sheet using the crystal plasticity finite element method based on the mathematical homogenization method which has been developed by the previous studies. We found that the true stress-logarithmic plastic strain (SS) curves calculated by the numerical biaxial tensile test slightly deviate from those measured by the biaxial tensile tests using a cruciform specimen. On the other hand, the results of the numerical tension-compression test demonstrated that the predicted SS curves shows a reasonable agreement with those obtained by the experiment using the biaxial stress-testing machine with comb-shaped dies.


2020 ◽  
Vol 47 ◽  
pp. 1270-1273
Author(s):  
Yu Ogasawara ◽  
Tomoyuki Hakoyama ◽  
Toshihiko Kuwabara ◽  
Hiroaki Hayamizu ◽  
Takeshi Ikeda ◽  
...  

2018 ◽  
Vol 920 ◽  
pp. 236-243
Author(s):  
Peng Zhou ◽  
Lei Deng ◽  
Xin Yun Wang

To study microstructure and texture evolution of 2024 aluminum alloy sheet under different loading conditions, thermal tensile and compression experiments of 2024 aluminum alloy rolled sheets were carried out at temperatures ranging from 300 °C to 450 °C and under strain rates ranging from 0.001 s-1 to 0.1 s-1. During tensile deformation, the HABs of original grains are directly elongated until abruption. DRX process occurs during compression. Dislocations appear during deformation, migrate and accumulate into LABs, and then rotate into HABs to form new grain.The three-dimensional orientation distribution functions (ODFs) in different stress states were measured, with related texture types and distribution laws compared. According to ODFs with a constant φ2, the deformation texture of {011} <100>Goss texture is gradually strengthened during thermal tension at high temperature and low strain rate (450°C/0.001s-1). The deformation texture of {011} <100>Goss texture is weakened with the strain increasing. Furthermore, the increase of deformation temperature or the decrease of strain rate slows down the weakening process of {011} <100> Goss texture, which is attributed to the recrystallization behavior during tensile deformation. Besides, since the recrystallization process proceeds more completely during hot compression, it produces a quasi-random texture.


Sign in / Sign up

Export Citation Format

Share Document