goss texture
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 429
Author(s):  
Yong Wang ◽  
Guangqiang Li ◽  
Chengyi Zhu ◽  
Xinbin Liu ◽  
Yulong Liu ◽  
...  

In this study, niobium was added into grain-oriented silicon steels, four Nb-bearing hot-rolled bands with Nb content range from 0–0.025 wt% were prepared and a detailed study of the micro characterization (microstructure, texture and precipitates) of hot-rolled bands was carried out by various analysis methods, such as EBSD and TEM. The results indicate that the precipitates in Nb-free steel are MnS and AlN; however, in the Nb-bearing steel they are MnS, AlN and Nb(C, N). The precipitates are finer and more dispersed in Nb-bearing steel, and a stronger pining force was obtained, which contributes to the finer microstructure and less recrystallization fractions of the hot-rolled bands. A larger volume fraction and stronger intensity of Goss texture is presented in steel with 0.025 wt% Nb due to the effective inhibiting effect. However, it has little effect on the changes of microstructure and texture when the Nb content is more than 0.009 wt%.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1478
Author(s):  
Liguang Wang ◽  
Shuhuan Wang ◽  
Jie Li ◽  
Jinyu Liang ◽  
Yunli Feng

Texture control of grain-oriented silicon steel is the key factor to ensure the magnetic properties of the finished product. Nb-containing grain-oriented silicon steel with different slab reheating temperatures was hot rolled followed by single-stage or two-stage cold rolling, and the textures were also analyzed. In the single-stage cold rolling process, as the slab reheating temperature is reduced, the intensity of the rotating cube texture {100}<011> and Goss texture {011}<100> drops, and that of the {111}<112> texture increases. In the two-stage cold rolling process, with the decrease in the slab reheating temperature, the intensity of the {111}<112> texture increases from 4.958 to 6.809. At the same slab reheating temperature, the intensity of the rotating cube texture declines more significantly in the two-stage cold rolling process. Finally, two-stage cold rolling with the slab reheating temperature of 1220 °C is found to be more beneficial for the formation of a sharp Goss texture during the second recrystallization. The magnetic induction intensity B800 of the final product is 1.87T, and the iron loss P1.7/50 is 1.36 W/kg.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1209
Author(s):  
Xin Tian ◽  
Shuang Kuang ◽  
Jie Li ◽  
Shuai Liu ◽  
Yunli Feng

In this study, the effects of decarburization annealing time on the primary recrystallization microstructure, the texture and the magnetic properties of the final product of 0.047% Nb low-temperature grain-oriented silicon steel were investigated by means of OM, EBSD and XRD. The results show that when the decarburization annealing condition is 850 °C for 5 min, the uniform fine primary recrystallization microstructure can be obtained, and the content of favorable texture {111} < 112 > is the highest while that of unfavorable texture {110} < 112 > is the lowest, which is mostly distributed near the central layer. At the same time, there are the most high-energy grain boundaries with high mobility in the primary recrystallization microstructure of the sample annealed at 850 °C for 5 min, and the ∑9 boundary has the highest percentage of grain boundaries. The samples with different decarburization annealing time were annealed at high temperature. It was found that perfect secondary recrystallization occurred after high-temperature annealing when the decarburization annealing condition was 850 °C for 5 min. The texture component was characterized by a single Goss texture, and the size of the Goss grain reached 4.6mm. Under such annealing conditions, the sample obtained shows the optimal soft magnetic properties of B800 = 1.89T and P1.7/50 = 1.33 w/kg.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3818
Author(s):  
Fan Lei ◽  
Yuhui Sha ◽  
Zhenghua He ◽  
Fang Zhang ◽  
Liang Zuo

Herein, a simple and efficient method is proposed for fabricating Fe81Ga19 alloy thin sheets with a high magnetostriction coefficient. Sharp Goss texture ({110}<001>) was successfully produced in the sheets by rapid secondary recrystallization induced by nanosized NbC particles at low temperatures. Numerous NbC precipitates (size ~90 nm) were obtained after hot rolling, intermediate annealing, and primary recrystallization annealing. The relatively higher quantity of nanosized NbC precipitates with 0.22 mol% resulted in finer and uniform grains (~10 μm) through thickness after primary recrystallization annealing. There was a slow coarsening of the NbC precipitates, from 104 nm to 130 nm, as the temperature rose from 850 °C to 900 °C in a pure nitrogen atmosphere, as well as a primary recrystallization textured by strong γ fibers with a peak at {111} <112> favoring the development of secondary recrystallization of Goss texture at a temperature of 850 °C. Matching of the appropriate inhibitor characteristics and primary recrystallization texture guaranteed rapid secondary recrystallization at temperatures lower than 950 °C. A high magnetostriction coefficient of 304 ppm was achieved for the Fe81Ga19 sheet after rapid secondary recrystallization.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1539
Author(s):  
Antonio Faba ◽  
Simone Quondam Antonio

Grain oriented steels are widely used for electrical machines and components, such as transformers and reactors, due to their high magnetic permeability and low power losses. These outstanding properties are due to the crystalline structure known as Goss texture, obtained by a suitable process that is well-known and in widespread use among industrial producers of ferromagnetic steel sheets. One of the most interesting research areas in this field has been the development of non-destructive methods for the quality assessment of Goss texture. In particular, the study of techniques that can be implemented in industrial processes is very interesting. Here, we provide an overview of techniques developed in the past, novel approaches recently introduced, and new perspectives. The reliability and accuracy of several methods and equipment are presented and discussed.


2021 ◽  
Vol 1023 ◽  
pp. 53-59
Author(s):  
Wen Duan Yan ◽  
Gao Sheng Fu ◽  
Wan Qing Lai ◽  
Hong Ling Chen ◽  
Yan Li ◽  
...  

Texture characteristics of compressed 1235 Al-alloy treated by different purification methods are studied by electron backscattered diffraction. The effects of oxide inclusions on texture components of material are studied as well. The main textures in hot-compressed 1235 Al-alloy are Cube texture, R texture, Gross texture, Brass texture, and Rotated cube texture. The lower the content of oxide inclusions in the material, the smaller the total relative ratio of textures. The total relative ratio of textures goes to the smallest by 1.8 % in high-efficient purified 1235 Al-alloy by oxide inclusion content of 0.051 %. The purification results have obvious effects on types and percentage of texture in the deformed alloy. With the decreasing content of oxide inclusion, the ratio of deformation texture decreases and recrystallization texture increases. Brass texture is gradually replaced by Goss texture in the deformation textures. R texture is the main texture in recrystallization textures. Therefore, reducing the content of oxide inclusions is effective for improving the hot deformation properties of 1235 Al-alloy.


2021 ◽  
Author(s):  
Renáta PALUPČÍKOVÁ ◽  
Kryštof HRADEČNÝ ◽  
Anastasia VOLODARSKAJA ◽  
Vlastimil VODÁREK

2021 ◽  
Vol 1016 ◽  
pp. 1653-1658
Author(s):  
Xiang Liu ◽  
Hai Jie Xu ◽  
Zhen Yu Gao ◽  
Yun Bo Xu ◽  
Jing Yu ◽  
...  

Fe-6.5wt%Si steel is an excellent soft magnetic material due to the near-zero magnetostriction and low core losses. In this study, a 0.3 mm-thick grain-oriented 6.5wt%Si steel sheet was produced by a novel strip casting and two-stage rolling. The microstructure and texture evolution were investigated with a special emphasis on the nucleation and growth of Goss grains. The thin normalized strip was composed of large columnar grains and small equiaxed grains. During intermediate annealing, Goss grains nucleated in the shear bands of the deformed <111>//ND grains, and the deformed {111}<112> grains provided most of the nucleation sites. After primary annealing, the Goss grains distributed across the entire thickness, which was different from the conventional rolling route. The fraction of high-angle boundaries (20°-45°) surrounding the Goss grains was apparently higher than those of the matrix grains, which promoted the abnormal growth of the Goss grains during secondary recrystallization.


2021 ◽  
Vol 118 (6) ◽  
pp. 604
Author(s):  
Li-Feng Fan ◽  
Mei-Mei Qin ◽  
Xing-Yuan Zhao ◽  
Zheng-Hai Zhu ◽  
Li-Jun Xiao ◽  
...  

The evolution of the microstructure and texture of CSP thin-gauge non-oriented silicon steel was investigated by OM, XRD and EBSD. Results show: (1) the equiaxed surface grains with 28.13 µm average grains size accounted for 19.14% of through-thickness, while deformed band structure dominated the center layer and the other maintained at a composite structure with the first two. With the cold-rolled reduction rate enhancing to 91.15%, the stratification structure transformed into a complete fibrous structure. Annealing from 925 °C to 975 °C, the average grain size of the annealing plate similarly increased, which begins with 67.3 µm and ends at 80.58 µm. (2) The texture of the hot-rolled sheets mainly located at Cube and Goss texture, while with the cold-rolled process executing, the type and volume of texture change and finally stabilize at α fiber texture ({110}//RD) with the peak at {114}<110> at 91.15% reductions rate. The {411}<148> texture on the α* fiber line throughout maintained the strongest texture at different annealing temperatures. (3) The initial re-crystallization temperature is in the range of 600–620 °C, and the re-crystallization is roughly completed at 700 °C. Part of {411}<148> oriented grains nucleated at {411}<148> sub-grains originated from α fiber deformed structure, and the others nucleate at the grains boundaries of the deformed α fiber grains or in the inner of {111}<110> and {111}<112> grains. When the re-crystallization was accomplished at 750 °C, {411}<148> oriented grains are significantly larger than other oriented grains compared to 680 °C or the less. (4) Best magnetic properties were obtained at 975 °C with the B50 = 1.506 T and P10/400 = 16.19 W/kg.


2020 ◽  
Vol 199 ◽  
pp. 311-325
Author(s):  
Haitao Jiao ◽  
Yunbo Xu ◽  
Longzhi Zhao ◽  
R.D.K. Misra ◽  
Yanchuan Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document