scholarly journals Quantitative Electron-Probe Microanalysis of Various Kinds of Rare-Earth Elements in Minerals.

1999 ◽  
Vol 28 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Norimasa NISHIDA ◽  
Mitsuyoshi KIMATA ◽  
Akane SUGIMOTO
Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Xiaosheng Yang ◽  
Hannu Tapani Makkonen ◽  
Lassi Pakkanen

Rare earth elements (REEs) are defined as lanthanides with Y and Sc. Rare earth occurrences including the REE-bearing phases and their distributions, measured by rare earth oxides (REOs), in the streams of processing a phosphate ore were determined by using MLA, the mineral liberation analysis and EPMA, the electron probe microanalysis. The process includes an apatite ore beneficiation by flotation and further processing of the beneficiation concentrate with sulfuric acid. Twenty-six, sixty-two and twelve percent of the total REOs (TREO) contents from the ore end up in the products of beneficiation tailings, phosphogypsum (PG) and phosphoric acid, respectively. Apatite, allanite, monazite and pyrochlore are identified as REE-bearing minerals in the beneficiation process. In the beneficiation tailings, the REEs are mainly distributed in monazite (10.3% TREO), apatite (5.9% TREO), allanite (5.4% TREO) and pyrochlore (4.3% TREO). Gypsum, monazite, apatite and other REE-bearing phases were found to host REEs in the PG and the REEs distributions are 44.9% TREO in gypsum, 15.8% TREO in monazite, 0.6% TREO in apatite and 0.6% TREO in other REE-bearing phases. Perspectives on the efficient recovery of REEs from the beneficiation tailings and the PG are discussed.


2011 ◽  
Vol 66 (9) ◽  
pp. 831-837 ◽  
Author(s):  
Yu. G. Lavrent’ev ◽  
I. M. Romanenko ◽  
M. P. Novikov ◽  
L. V. Usova ◽  
V. N. Korolyuk

Author(s):  
S Dalmasso ◽  
R W Martin ◽  
P R Edwards ◽  
K P O'Donnell ◽  
B Pipeleers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document