Relations between Attentional and Intentional Neural Systems

1995 ◽  
Vol 81 (3) ◽  
pp. 947-951 ◽  
Author(s):  
Gianpaolo Basso ◽  
Paolo Nichelli

This study explored whether preparing an arm movement influences detection of a visual stimulus We cued subjects to respond with either a rightward or a leftward movement to the appearance of a stimulus located either in the centre, in the left, or in the right visual field. Programming a movement toward a lateral direction enhanced visual attention at that side. Rightward movements were associated with an attentional cost only for responses to a central location, while leftward movements slowed response latencies to both central and right-sided stimuli. We hypothesized that programming a rightward movement depends on the activation of intentional centers in either cerebral hemisphere. On the contrary, leftward movements might be only driven by the contralateral hemisphere.

1994 ◽  
Vol 79 (1) ◽  
pp. 699-702 ◽  
Author(s):  
Daniel S. Lobel ◽  
Rex M. Swanda ◽  
Miklos F. Losonczy

Numerous studies have shown impaired verbal functioning in schizophrenic patients as compared with normals. The verbal deficits are generally attributed to damage of the left cerebral hemisphere. This attribution is based on literature which suggests that verbal processing is primarily mediated by the left hemisphere in right-handed humans. This study explored left-hemispheric integrity directly by assessing sustained attention in both the left and right hemispheres of 40 schizophrenic patients with the Weintraub Cancellation Tasks. Patients made significantly more errors of omission on the right visual field than on the left. These results are consistent with cognitive research in schizophrenia by demonstrating selective left-hemispheric impairment relative to right-hemispheric functioning.


1984 ◽  
Vol 59 (3) ◽  
pp. 895-898
Author(s):  
Stephen Meredith Williams

The right visual-field advantage for bilateral presentation put forward by McKeever and Huling was investigated. The central-fixation task was varied so that in one condition this task was nonverbal. Results gave some support for scanning-type explanations in this paradigm but over-all favoured Kinsbourne's activation-and-priming account.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Bartosz Helfer ◽  
Stefanos Maltezos ◽  
Elizabeth Liddle ◽  
Jonna Kuntsi ◽  
Philip Asherson

Abstract Background. We investigated whether adults with attention-deficit/hyperactivity disorder (ADHD) show pseudoneglect—preferential allocation of attention to the left visual field (LVF) and a resulting slowing of mean reaction times (MRTs) in the right visual field (RVF), characteristic of neurotypical (NT) individuals —and whether lateralization of attention is modulated by presentation speed and incentives. Method. Fast Task, a four-choice reaction-time task where stimuli were presented in LVF or RVF, was used to investigate differences in MRT and reaction time variability (RTV) in adults with ADHD (n = 43) and NT adults (n = 46) between a slow/no-incentive and fast/incentive condition. In the lateralization analyses, pseudoneglect was assessed based on MRT, which was calculated separately for the LVF and RVF for each condition and each study participant. Results. Adults with ADHD had overall slower MRT and increased RTV relative to NT. MRT and RTV improved under the fast/incentive condition. Both groups showed RVF-slowing with no between-group or between-conditions differences in RVF-slowing. Conclusion. Adults with ADHD exhibited pseudoneglect, a NT pattern of lateralization of attention, which was not attenuated by presentation speed and incentives.


1992 ◽  
Vol 44 (3) ◽  
pp. 529-555 ◽  
Author(s):  
T. A Mondor ◽  
M.P. Bryden

In the typical visual laterality experiment, words and letters are more rapidly and accurately identified in the right visual field than in the left. However, while such studies usually control fixation, the deployment of visual attention is rarely restricted. The present studies investigated the influence of visual attention on the visual field asymmetries normally observed in single-letter identification and lexical decision tasks. Attention was controlled using a peripheral cue that provided advance knowledge of the location of the forthcoming stimulus. The time period between the onset of the cue and the onset of the stimulus (Stimulus Onset Asynchrony—SOA) was varied, such that the time available for attention to focus upon the location was controlled. At short SO As a right visual field advantage for identifying single letters and for making lexical decisions was apparent. However, at longer SOAs letters and words presented in the two visual fields were identified equally well. It is concluded that visual field advantages arise from an interaction of attentional and structural factors and that the attentional component in visual field asymmetries must be controlled in order to approximate more closely a true assessment of the relative functional capabilities of the right and left cerebral hemispheres.


Author(s):  
Richard Wennberg ◽  
Sukriti Nag ◽  
Mary-Pat McAndrews ◽  
Andres M. Lozano ◽  
Richard Farb ◽  
...  

A 24-year-old woman was referred because of incompletely-controlled complex partial seizures. Her seizures had started at age 21, after a mild head injury with brief loss of consciousness incurred in a biking accident, and were characterized by a sensation of bright flashing lights in the right visual field, followed by numbness and tingling in the right foot, spreading up the leg and to the arm, ultimately involving the entire right side, including the face. Occasionally they spread further to involve right facial twitching with jerking of the right arm and leg, loss of awareness and, at the onset of her epilepsy, rare secondarily generalized convulsions. Seizure frequency averaged three to four per month. She was initially treated with phenytoin and clobazam and subsequently changed to carbamazepine 800 milligrams per day. She also complained that her right side was no longer as strong as her left and that it was also numb, especially the leg, but felt that this weakness had stabilized or improved slightly over the past two years.


1976 ◽  
Vol 43 (1) ◽  
pp. 255-259 ◽  
Author(s):  
Takeshi Hatta

Study of matching judgment was designed to demonstrate an effect of lateral onset asynchrony in left-handed subjects, 7 males and 8 females. Japanese Hirakana letters or random forms were presented to one visual field first and to the other visual field second. 15 left-handers were requested to judge whether the successively presented stimuli were “same” or “different.” The results showed that for both types of stimuli there are no differences in accuracy of matching judgment whether the standard stimulus was presented to the right visual field first or to the left. These results indicate that the left-handed subjects may have a tendency toward hemispheric equi-potentiality for recognition of both verbal and non-verbal materials.


1987 ◽  
Vol 65 (3) ◽  
pp. 899-906 ◽  
Author(s):  
Edward J. Hass ◽  
Christopher W. Holden

It has been suggested that the hypnotic state results in a greater relative activation or priming of the right cerebral hemisphere than of the left hemisphere. The experiment reported here employed hypnosis to produce such a priming effect in a visual-detection task. Subjects were required to detect the presence or absence of a gap in outline squares presented either to the left visual field or right visual field, with response time as the primary dependent measure. Those subjects who were hypnotized produced a 50-msec. response time difference favoring squares presented to the left visual field whereas control subjects and simulator-control subjects showed no lateral asymmetries. The result is classified as a material-nonspecific priming effect and discussed with regard to the nature of processing resources.


1990 ◽  
Vol 64 (4) ◽  
pp. 1352-1360 ◽  
Author(s):  
M. R. Isley ◽  
D. C. Rogers-Ramachandran ◽  
P. G. Shinkman

1. The present experiments were designed to assess the effects of relatively large optically induced interocular torsional disparities on the developing kitten visual cortex. Kittens were reared with restricted visual experience. Three groups viewed a normal visual environment through goggles fitted with small prisms that introduced torsional disparities between the left and right eyes' visual fields, equal but opposite in the two eyes. Kittens in the +32 degrees goggle rearing condition experienced a 16 degrees counterclockwise rotation of the left visual field and a 16 degrees clockwise rotation of the right visual field; in the -32 degrees goggle condition the rotations were clockwise in the left eye and counterclockwise in the right. In the control (0 degree) goggle condition, the prisms did not rotate the visual fields. Three additional groups viewed high-contrast square-wave gratings through Polaroid filters arranged to provide a constant 32 degrees of interocular orientation disparity. 2. Recordings were made from neurons in visual cortex around the border of areas 17 and 18 in all kittens. Development of cortical ocular dominance columns was severely disrupted in all the experimental (rotated) rearing conditions. Most cells were classified in the extreme ocular dominance categories 1, 2, 6, and 7. Development of the system of orientation columns was also affected: among the relatively few cells with oriented receptive fields in both eyes, the distributions of interocular disparities in preferred stimulus orientation were centered near 0 degree but showed significantly larger variances than in the control condition.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document