scholarly journals Effects of Fiber Content and Fiber Orientation on Fatigue Strength of Short-Fiber Reinforced Plastic.

1992 ◽  
Vol 41 (467) ◽  
pp. 1285-1291 ◽  
Author(s):  
Yoshiaki AKINIWA ◽  
Shoji HARADA ◽  
Yoshinori YAGYU ◽  
Masahiro NAKANO
2021 ◽  
Vol 5 (12) ◽  
pp. 325
Author(s):  
Olusanmi Adeniran ◽  
Weilong Cong ◽  
Eric Bediako ◽  
Victor Aladesanmi

The additive manufacturing (AM) of carbon fiber reinforced plastic (CFRP) composites continue to grow due to the attractive strength-to-weight and modulus-to-weight ratios afforded by the composites combined with the ease of processibility achievable through the AM technique. Short fiber design factors such as fiber content effects have been shown to play determinant roles in the mechanical performance of AM fabricated CFRP composites. However, this has only been investigated for tensile and flexural properties, with no investigations to date on compressive properties effects of fiber content. This study examined the axial and transverse compressive properties of AM fabricated CFRP composites by testing CF-ABS with fiber contents from 0%, 10%, 20%, and 30% for samples printed in the axial and transverse build orientations, and for axial tensile in comparison to the axial compression properties. The results were that increasing carbon fiber content for the short-fiber thermoplastic CFRP composites slightly reduced compressive strength and modulus. However, it increased ductility and toughness. The 20% carbon fiber content provided the overall content with the most decent compressive properties for the 0–30% content studied. The AM fabricated composite demonstrates a generally higher compressive property than tensile property because of the higher plastic deformation ability which characterizes compression loaded parts, which were observed from the different failure modes.


2012 ◽  
Vol 06 ◽  
pp. 640-645
Author(s):  
Jin-Woo Kim ◽  
Hyoung-Seok Kim ◽  
Dong-Gi Lee

For unidirectional composite material, there is a theoretical mixture rule equation to calculate the strength of composite from properties of matrix and fiber content. However, the equation for tensile strength with the fiber content and the fiber orientation is not available. Therefore, this study was investigated what affect fiber content and fiber orientation have on the strength of composites. Glass fiber-reinforced plastic by changing fiber orientation and fiber content was made. Tensile strength of 0° direction of composites increased being proportional fiber content and fiber orientation function as change from isotropy (J=0) to anisotropy (J=1). But, tensile strength of 90° direction by separation of fiber filament decreased when tensile load is imposed for width direction of reinforcement fiber length direction. In this study, empirical equation to estimate tensile strength out of fiber orientation and fiber content was proposed.


2015 ◽  
Vol 9 (4) ◽  
pp. 356-364 ◽  
Author(s):  
Satoru Maegawa ◽  
◽  
Yuta Morikawa ◽  
Shinya Hayakawa ◽  
Fumihiro Itoigawa ◽  
...  

This paper discusses tool-wear processes in the milling of carbon fiber-reinforced plastic (CFRP) laminates. Plane down-milling tests with unidirectional and cross-directional CFRP laminates were performed using two types of cutting tools made of tungsten carbide and polycrystalline diamond. Measurements of the changes in the cutting forces and tool-wear widths over the cutting distance revealed that the fiber orientation direction in the CFRP laminates relative to the tool-traveling direction is an important parameter to determine the tool-wear processes. Additionally, based on obtained experimental results, a wear parameter to characterize cutting tool wear is introduced. This parameter can accurately explain the relationship between the worn tool-edge profiles and the processed-surface quality.


Sign in / Sign up

Export Citation Format

Share Document