scholarly journals Compaction and Liquefaction of a Sandy Layer: Simulation of Shaking Table Experiments

2013 ◽  
Vol 59 (4) ◽  
pp. 509-521 ◽  
Author(s):  
A. Sawicki ◽  
W. Świdziński

AbstractThis paper presents numerical simulations of the behavior of a sandy layer subjected to a cyclic horizontal acceleration in shaking table tests, with a particular attention focused on the settlements of a dry sand layer, and on the liquefaction of saturated sand. A compaction/liquefaction model (C/L) is applied to these simulations. The influence of specific parameters of the model on the compaction and liquefaction of a sandy layer is shown and discussed. The results of simulations are compared with selected experimental data.

2019 ◽  
Vol 9 (8) ◽  
pp. 1677 ◽  
Author(s):  
Zhijun Zhou ◽  
Jiangtao Lei ◽  
Shaobo Shi ◽  
Tong Liu

Aeolian sand high embankments are always damaged by earthquakes; however, little research has addressed this so far. In this study, shaking table tests were conducted on three aeolian sand high embankment models. Based on the shear failure mechanism of aeolian sand, the seismic responses of model embankments were analyzed. When seismic waves were inputted, the horizontal acceleration magnification (HAM) of three models always exceeded 1.0, and showed an increasing trend with height. Furthermore, according to the HAM change rules of three models under different input peak accelerations, the destruction of model embankments under earthquakes includes three stages: the reflected wave emergence (RWE) stage, the reflected wave strengthening (RWS) stage, and the acceleration magnification attenuation (AMA) stage. According to this definition, models with slopes of 1/1.2 and 1/0.8 experienced all three stages during tests, and the critical horizontal acceleration transform from the RWS stage to the AMA stage appeared. The model with a slope of 1/1.5 only experienced RWE and RWS stages during the test. At the end of the tests, the macroscopic instability mechanisms of all three models were studied, which were found to match the distribution law of HAM during tests and the destruction stage definition.


2019 ◽  
Vol 92 ◽  
pp. 17002
Author(s):  
Zitao Zhang ◽  
Jianzhang Xiao ◽  
Yingqi Wei ◽  
Hong Cai ◽  
Jianhui Liang ◽  
...  

Similar to fully saturated sand, the partially saturated sand can also liquefy under certain conditions during earthquakes. This study aims to characterize the seismic behaviour of partially saturated sand. Centrifuge shaking table tests were performed using the IWHR horizontal-vertical centrifuge shaker. The experimental results indicate that the liquefaction resistance of the partially saturated sand increases with decreasing the degree of saturation and with increasing the initial effective stress right before shaking. The boundary between the liquefied and un-liquefied sand becomes deeper and deeper during shaking.


Géotechnique ◽  
2019 ◽  
Vol 69 (12) ◽  
pp. 1071-1085 ◽  
Author(s):  
Moustafa Khaled Elsawy ◽  
M. Hesham El Naggar ◽  
Amy Cerato ◽  
Ahmed Elgamal

2011 ◽  
Vol 255-260 ◽  
pp. 2325-2329
Author(s):  
Ya Min Zhao ◽  
Jing Yu Su ◽  
Ming Lu

A new 3-dimensional isolation bearing (3DIB), which is combined with lead rubber bearing (LRB) and disk spring bearing (DSB), is introduced in this paper. A series of shaking table tests of the 1/2 scale fixed-base and 3DIB base-isolated model were compared to confirm the validity of the 3DIB. Results show that the 3DIB can isolate 3-dimensional earthquake energy remarkably. Large displacement of the 3DIB base-isolated system occurred on the isolation layer, and the inter-story deformation of the superstructure changed slightly. The horizontal acceleration responses of 3DIB model decreased more than 60% and the vertical acceleration responses decreased more than 50% under the severe earthquake of 0.4g in PGA input, which confirmed that 3DIB could isolate both the horizontal and vertical earthquakes obviously.


2015 ◽  
Vol 76 ◽  
pp. 13-28 ◽  
Author(s):  
Chen Guoxing ◽  
Chen Su ◽  
Zuo Xi ◽  
Du Xiuli ◽  
QI Chengzhi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document