Identification of the Critical Pore Sizes in Sintered and Ecaped Aluminium 6XXX Alloy

2013 ◽  
Vol 58 (2) ◽  
pp. 371-375 ◽  
Author(s):  
J. Bidulská ◽  
T. Kvačkaj ◽  
I. Pokorný ◽  
R. Bidulský ◽  
M. Actis Grande

The main aim of this paper is to investigate, by means of comparison of experimental studies and mathematical models, the evolution of porosity as consequence of pressing, sintering and ECAPping an aluminium based powder (6xxx). After applying the compacting pressure, specimens were dewaxed in a ventilated furnace at 400º for 60 min. Sintering was carried out in a vacuum furnace at 610ºC for 30 min. The specimens were then ECAPed for 1 pass. The 2-dimensional quantitative image analysis was carried out by means of SEM and OM for the evaluation of the aforementioned characteristics. Results show the effect of processing parameters on the fracture/microstructure behaviour of the studied aluminium PM alloy. Quantitative image analysis, as well as fractographic interpretation and microstructure identification of weak sites in the studied aluminium PM alloy, provide a reliable and reproducible statistical procedure for the identification of the critical pore sizes.

Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


2011 ◽  
Vol 55 (5) ◽  
pp. 455-459 ◽  
Author(s):  
Ryotaro Jingu ◽  
Masafumi Ohki ◽  
Sumiko Watanabe ◽  
Sadafumi Tamiya ◽  
Setsuo Sugishima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document