scholarly journals A Simple PSO-Based Method for Power Distribution System Components Reliability Parameters Calibration

2021 ◽  
Vol 18 (1) ◽  
pp. 40-46
Author(s):  
Shahrokh Shojaeian ◽  
Sajjad Hashemi Rizi

Abstract In this paper, a proposed algorithm based on Particle Swarm Optimization (PSO) is used to present a simple method for data calibration of reliability indices in electrical power distribution networks. The main feature of the proposed method is its comprehensiveness, since the whole reliability indices can be calibrated using a proper objective function. In order to evaluate the effectiveness of the suggested algorithm, calculations are made on the well-known IEEE-RBTS Bus2 test system. The results confirm the simplicity and validation of the proposed method, and verify that by applying the proposed method, the computation speed for data calibration can be reduced as well.

Author(s):  
Yahia M Esmail ◽  
S K Elsayed ◽  
M A Mehanna

<p class="DefaultParagraphFont1" align="center"> </p><p align="center"><strong><em>Abstract</em></strong></p><p><em>         Electrical Power Quality is becoming intensity concerned from both electric utilities and customers. Voltage Fluctuations is a major power quality problem as it has a significant impact on both the equipment and production environment. This work describes the voltage control technique of mitigation of voltage fluctuations and clearing fault using Distribution Static Synchronous Compensator (DSTATCOM). The test system used is IEEE 9-bus distribution system clarified optimal location of DSTATCOM by using Artificial Neural Network (ANN). A simulation was done using MATLAB/Simulink software to obtain the results..</em></p><p> </p>


This Paper enlightens the significance of the reliability evaluation for an electrical power distribution network using the analytical technique FMEA. The power distribution system is subject to interruptions frequently as a lot of devices are responsible for its effective operation. All the possible failures of each component are considered and the reliability is evaluated in terms of system reliability indices like SAIFI, SAIDI, ENS, and ASAI. FMEA method observes the failure modes of a procedure and reduces it by ranking over its impacts. In this paper, RBTS bus2 distribution network is used for the analysis. The influences of various feeder reconfigurations are considered and the system reliability indices are obtained. The obtained results show that the reliability of the distribution system is enriched with various feeder reconfigurations. Reliability Evaluation helps to design the future Distribution system and its expansion.


2019 ◽  
Vol 28 ◽  
pp. 01037 ◽  
Author(s):  
Maciej Kozak

The paper presents the background and results of numerical simulation and experimental research of a system using auctioneering diodes used to distribute the electrical power between two power converters connected with intermediate circuits in parallel, direct connection. Presented non-isolated power distribution system which utilizes blocking diodes placed in DC branches are used in the selected ship's electrical systems, however, they create problems related to control and handling ground faults. Another issue occurring during the operation of this type of systems is increased heat dissipation while diodes switching. Selected problems related to the operation of experimental system have been identified by means of simulation studies and experiments carried out in a 11 kVA laboratory system and the theoretical basis along with results are provided in the article.


2020 ◽  
Vol 12 (10) ◽  
pp. 4317
Author(s):  
K. Prakash ◽  
F. R. Islam ◽  
K. A. Mamun ◽  
H. R. Pota

A distribution network is one of the main parts of a power system that distributes power to customers. While there are various types of power distribution networks, a recently introduced novel structure of an aromatic network could begin a new era in the distribution levels of power systems and designs of microgrids or smart grids. In order to minimize blackout periods during natural disasters and provide sustainable energy, improve energy efficiency and maintain stability of a distribution network, it is essential to configure/reconfigure the network topology based on its geographical location and power demand, and also important to realize its self-healing function. In this paper, a strategy for reconfiguring aromatic networks based on structures of natural aromatic molecules is explained. Various network structures are designed, and simulations have been conducted to justify the performance of each configuration. It is found that an aromatic network does not need to be fixed in a specific configuration (i.e., a DDT structure), which provides flexibility in designing networks and demonstrates that the successful use of such structures will be a perfect solution for both distribution networks and microgrid systems in providing sustainable energy to the end users.


Sign in / Sign up

Export Citation Format

Share Document