scholarly journals Spectral investigations of some piperidin-4-one molecular addition compounds

2020 ◽  
Vol 31 (1) ◽  
pp. 18-26
Author(s):  
Jayaraman Chakkaravarthy ◽  
Inbasekaran Muthuvel ◽  
Ganesamoorthy Thirunarayanan

AbstractIn the present study, some 2- and 3-substituted piperidin-4-ones (A1-A3) were chosen as proton acceptor and maleic anhydride was chosen as proton donor. Piperidin-4-ones (A1, A2 ---amp--- A3) were mixed with maleic anhydride in ether medium and the corresponding molecular adduct products (B1, B2 ---amp--- B3) thus obtained were collected and purified. The 1H and 13C NMR spectra were recorded for piperidine-4-one and their addition compounds. The 1H and 13C NMR chemical shifts of products (B1, B2 ---amp--- B3) are analyzed and compared with those of the corresponding piperidine-4-ones (A1, A2 ---amp--- A3). In order to confirm the formation of molecular addition compounds the GC-Mass spectrum was recorded for all adducts B1-B3 and the fragmentations patterns were analyzed.

2006 ◽  
Vol 61 (10-11) ◽  
pp. 600-606
Author(s):  
Savitha M. Basappa ◽  
Basavalinganadoddy Thimme Gowda

Twenty six N-(2/3/4-substituted phenyl)-2,4-disubstituted benzenesulphonamides of the general formulae 2,4-(CH3)2C6H3SO2NH(i-XC6H4), 2-CH3-4-ClC6H3SO2NH(i-XC6H4) and 2,4- Cl2C6H3SO2NH(i-XC6H4), where i-X = H, 2-CH3, 3-CH3, 4-CH3, 2-Cl, 3-Cl, 4-Cl, 4-F or 4-Br, have been prepared, characterized and their infrared spectra in the solid state and 1H and 13C NMR spectra in solution studied. The infrared N-H stretching vibrational frequencies vary in the range 3298 - 3233 cm−1. Asymmetric and symmetric SO stretching vibrations appear in the ranges 1373 - 1311 cm−1 and 1177 - 1140 cm−1, respectively, while C-S, S-N and C-N stretching absorptions vary in the ranges 840 - 812 cm−1, 972 - 908 cm−1 and 1295 - 1209 cm−1, respectively. The various 1H and 13C NMR chemical shifts are assigned to the protons and carbon atoms of the two benzene rings in line with those for similar compounds. The incremental shifts due to the groups in the parent compounds have been computed by comparing the chemical shifts of the protons or carbon atoms in these compounds with those of benzene or aniline, respectively. The computed incremental shifts and other data were used to calculate the 1H and 13C NMR chemical shifts of the substituted compounds in three different ways. The calculated chemical shifts by the three methods compared well with each other and with the observed chemical shifts. It is observed that there are no particular trends in the variation of either the infrared absorption frequencies or the chemical shifts with the nature or site of substitution.


2002 ◽  
Vol 80 (7) ◽  
pp. 774-778 ◽  
Author(s):  
Raquel M Cravero ◽  
Guillermo R Labadie ◽  
Manuel González Sierra

The 13C NMR spectra of a series of 5,6-epoxides in decalinic systems were studied. The interpretation of the chemical shifts allowed us to formulate an empirical rule to predict the epoxide stereochemistry. A discussion of the scope and limitations of this method and its extension to larger carbon skeletons is also presented.Key words: epoxide stereochemistry, 13C NMR, NMR, decalinic systems, oxiranes.


1984 ◽  
Vol 49 (10) ◽  
pp. 2393-2399 ◽  
Author(s):  
Antonín Kurfürst ◽  
Petr Trška ◽  
Igor Goljer

1H and 13C NMR spectra of twelve 1,4-dihydropyridines I and twelve corresponding pyridine derivatives II have been measured in hexadeuteriodimethyl sulphoxide and interpreted. Correlation equations are given for the chemical shifts of the atoms in the heterocyclic rings of the two series of compounds.


2012 ◽  
Vol 90 (1) ◽  
pp. 71-74
Author(s):  
Di Qiu ◽  
Zhitong Zheng ◽  
Fanyang Mo ◽  
Yan Zhang ◽  
Jianbo Wang

Arylboronates are important compounds widely used in cross-coupling reactions. By analyzing the NMR spectra data of a variety of pinacol arylboronates, we have determined the increments for 1H and 13C NMR chemical shifts caused by a pinacol boronate substituent in the benzene ring. These data can be used in the estimation of chemical shifts of aromatic pinacol boronates.


1990 ◽  
Vol 55 (1) ◽  
pp. 136-146 ◽  
Author(s):  
Josef Jirman ◽  
Antonín Lyčka ◽  
Miroslav Ludwig

15N and 13C NMR spectra have been measured of the compounds type XC(=NOH)Y, where X, Y = COCH3, CN, COOR, CONHR, and X +Y = C6H4(CO)2. The (E)-(Z) isomerism at the C=NOH bond has been studied by means of 15N labelling and stereospecific behaviour of the 2J(15N, 13C) coupling constants. The nitrosation of methyl cyanoacetate gives specifically the respective (E)-oxime, whereas that of acetoacetanilide gives the (Z)-isomer. The nitrosation of ethyl acetoacetate gives both (E)- and (Z)-oximes in a ratio of ca 1:10; the (E)-isomer is less stable and is transformed into the (Z)-isomer. The applicability of the 1J(13C, 13C) coupling constants and lanthanoid shift reagents to the study of (E)-(Z) isomerism of oximes with geminal carbonyl groups has also been verified. The 15N NMR chemical shifts of the oximes studied correlate with their respective pKa values measured in dimethyl sulfoxide according to the equation pKa = -0.11δ15N + 13.44.


2004 ◽  
Vol 18 (3) ◽  
pp. 469-483
Author(s):  
Yoshikazu Hiraga ◽  
Satomi Niwayama

The structures of the half-esters from the monohydrolysis of (exo,exo)-, (endo,endo)-, and (endo,exo)-dialkyl bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylates were determined by1H and13C NMR as well as 2D NMR spectra, and the complete spectral assignment has been made. After conversion of one of the carboalkoxy groups to a carboxyl group, different tendencies were observed for the differences in1H and13C NMR chemical shifts between half-esters and the corresponding diesters.


2006 ◽  
Vol 61 (10-11) ◽  
pp. 595-599
Author(s):  
Basavalinganadoddy Thimme Gowda ◽  
Shilpa Lakshmipathy ◽  
Jayalakshmi K. Lakshmipathy

Nineteen N-(2/3/4-methyl/halo/nitro-phenyl)-acetamides and substituted acetamides, 2/3/4- YC6H4NH-CO-CH3−iXi (Y = CH3, F, Cl, Br or NO2; X = Cl or CH3 and i = 0, 1, 2 or 3), have been prepared, characterized, and their 1H and 13C NMR spectra in solution measured and correlated. 1H and 13C NMR chemical shifts were assigned to the protons and carbon atoms, respectively, in line with those for similar compounds. Since the chemical shifts are dependent on the electron density around the nucleus or associated with the atom to which it is bound, the incremental shifts of the aromatic protons or carbon atoms due to -NH-CO-CH3−iXi and -CO-CH3−iXi (X = Cl or CH3 and i = 0, 1, 2, 3) in all the N-phenyl-substituted acetamides, C6H5NH-CO-CH3−iXi, are calculated by comparing the proton or carbon chemical shifts of these compounds with those of benzene or aniline. The incremental shifts due to the groups in the parent compounds have also been computed by comparing the chemical shifts of the protons or carbon atoms in these compounds with those of benzene or aniline, respectively. The computed incremental shifts and other data were used to calculate the 1H and 13C NMR chemical shifts of the substituted compounds in three different ways. The calculated chemical shifts by the three methods compared well with each other and with the observed chemical shifts, testing the validity of the principle of additivity of the substituent effects in these compounds. The variation of 1H NMR chemical shifts of either the aromatic or N-H protons, with the substituents in N-(phenyl)- and N-(2/3/4-chloro/methylphenyl)-acetamides and substituted acetamides did not follow the same trend, while the variation of the 13C NMR chemical shifts of C-1 and C=O carbon atoms and those of alkyl carbon atoms of these compounds followed more or less the same trend.


1983 ◽  
Vol 48 (12) ◽  
pp. 3396-3401 ◽  
Author(s):  
Jan Schraml ◽  
Micheline Grignon-dubois ◽  
Jacques Dunoguès ◽  
Harald Jancke ◽  
Günter Engelhardt ◽  
...  

29Si and 13C NMR chemical shifts are reported for cyclopropyl derivatives with the structure (CH3)3-nRnSiC3H5 where R = OSi(CH3)3 and OCH3. He carbon chemical shifts show substituent effects which are intermediate between those found in the corresponding vinyl and ethyl silanes. The 29Si chemical shifts, however, do not provide any evidence for back bonding between the cyclopropane ring and the silicon atom.


1988 ◽  
Vol 53 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Antonín Lyčka ◽  
Josef Jirman ◽  
Jaroslav Holeček

The 17O and 13C NMR spectra of eight geminal diacetates RCH(O(CO)CH3)2 derived from simple aldehydes have been measured. In contrast to the dicarboxylates R1R2E(O(CO)R3)2, where E = Si, Ge, or Sn, whose 17O NMR spectra only contain a single signal, and, on the other hand, in accordance with organic carboxylic esters, the 17O NMR spectra of the compound group studied always exhibit two well-resolved signals with the chemical shifts δ(17O) in the regions of 183-219 ppm and 369-381 ppm for the oxygen atoms in the groups C-O and C=O, respectively.


1980 ◽  
Vol 45 (10) ◽  
pp. 2766-2771 ◽  
Author(s):  
Antonín Lyčka

The 13C and 14N NMR spectra of 1M solutions of 1-(substituted phenyl)pyridinium salts (4-CH3, 4-OCH3, H, 4-Cl, 4-Br, 4-I, 3-NO2, 4-NO2, 2,4-(NO2)2 (the 13C NMR only)) have been measured in heavy water at 30 °C. The 13C and 14N chemical shifts, the 1J(CH) coupling constants, some 3J(CH) coupling constants, and values of half-widths Δ 1/2 of the 14N NMR signals are given. The 13C chemical shifts of C(4) correlate with the σ0 constants (δC(4) = (1.79 ± 0.097) σ0 + (147.67 ± 0.041)), whereas no correlation of the nitrogen chemical shifts with the σ constants has been found. The half-widths Δ 1/2 correlate with the σ0 constants (Δ 1/2 = (76.2 ± 4.9) σ0 + (106.4 ± 2.2)) except for 1-phenylpyridinium chloride.


Sign in / Sign up

Export Citation Format

Share Document