scholarly journals The Removal of Reactive Red 141 from Wastewater: A Study of Dye Adsorption Capability of Water-Stable Electrospun Polyvinyl Alcohol Nanofibers

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Çigdem Akduman ◽  
Seniha Morsümbül ◽  
Emriye Perrin Akçakoca Kumbasar

Abstract The dye production and its use in textile and related industries resulted in discharge of dye to wastewater. Adsorption for color removal is known as equilibrium separation process, and the resultant decolorization is influenced by physicochemical factors such as adsorbent surface area. The nanofiber membranes prepared by the electrospinning method have controllable nanofiber diameter and pore size distribution (PSD) with a high surface area to volume or mass ratio. In this study, polyvinyl alcohol (PVA) nanofibrous membranes were prepared by the electrospinning method at different collection times such as 3, 5 and 10 h and heat fixated at 130, 150 and 170°C for 10 min, and then, the adsorption capability of PVA nanofiber membranes for Reactive Red 141 from aqueous solution was investigated. In order to make PVA nanofibers stable to water, the nanofibrous membranes were chemically cross-linked by a polycarboxylic acid (1,2,3,4 butanetetracarboxylic acid (BTCA)). PVA nanofibrous membranes were characterized by scanning electron microscopy, thermogravimetric analysis, swelling tests and pore size analysis. The results indicated that BTCA crosslinking improved the thermal and water stability of the nanofibrous structure but has no significant effect on the pore sizes of the membranes. Adsorption of Reactive Red 141 was studied by the batch technique, and it was observed that PVA nanofibers removed approximately >80% of the dye.

2015 ◽  
Vol 87 (9-10) ◽  
pp. 1051-1069 ◽  
Author(s):  
Matthias Thommes ◽  
Katsumi Kaneko ◽  
Alexander V. Neimark ◽  
James P. Olivier ◽  
Francisco Rodriguez-Reinoso ◽  
...  

AbstractGas adsorption is an important tool for the characterisation of porous solids and fine powders. Major advances in recent years have made it necessary to update the 1985 IUPAC manual on Reporting Physisorption Data for Gas/Solid Systems. The aims of the present document are to clarify and standardise the presentation, nomenclature and methodology associated with the application of physisorption for surface area assessment and pore size analysis and to draw attention to remaining problems in the interpretation of physisorption data.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 396
Author(s):  
Jinlin Yang ◽  
Shuo Xu ◽  
Wentao Zhou ◽  
Pengyan Zhu ◽  
Jiguang Liu ◽  
...  

Gossan ore of sulfide zinc deposit contains abundant zinc, iron, and other metal elements, which is a significant resource with complex components and can be utilized. In this study, a new technology of preparing zinc ferrite from zinc sulfide deposit gossan was proposed. The effects of Al2O3, CaO, and SiO2 in gossan on the formation of zinc ferrite were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and specific surface area and pore size analysis (BET). The results show that the presence of Al2O3 and CaO could hinder the formation of zinc ferrite, while silica had no effect on the formation of zinc ferrite. Under the conditions of the molar ratio of ZnO and Fe2O3 to Al2O3, CaO, and SiO2 of 1:1:1, an activation time of 60 min, and a roasting temperature of 750 °C for 120 min, the products, which had good crystallinity, smooth particle surface, and uniform particle size could be obtained. In addition, compared to the roasted products with Al2O3 and CaO, the specific surface area, pore volume, and pore size of the products with SiO2 were the largest.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5124
Author(s):  
Eun Hyuk Chung ◽  
Jong Pil Kim ◽  
Hyun Gyu Kim ◽  
Jae-Min Chung ◽  
Sei-Jin Lee ◽  
...  

It has been reported that improving electrical conductivity and maintaining stable structure during discharge/charge process are challenge for Si to be used as an anode for lithium ion batteries (LIB). To address this problem, milkweed (MW) was carbonized to prepare hollow carbon microtubes (HCMT) derived from biomass as an anode template for LIB. In order to improve electrical conductivity, various materials such as chitosan (CTS), agarose, and polyvinylidene fluoride (PVDF) are used as carbon source (C1, C2, and C3) by carbonization. Carbon coated HCMT@Si composits, HCMT@Si@C1, HCMT@Si@C1@C2, and HCMT@Si@C1@C3, have been successfully synthesized. Changes in structure and crystallinity of HCMT@Si composites were characterized by using X-ray diffraction (XRD). Specific surface area for samples was calculated by using BET (Brunauer–Emmett–Teller). Also, pore size and particle size were obtained by particle and pore size analysis system. The surface morphology was evaluated using high resolution scanning electron microscopy (HR-SEM), Field Emission transmission electron microscopy (TEM). The thermal properties of HCMT@Si composites were analyzed by thermogravimetric analysis (TGA). Our research was performed to study the synthesis and electrochemical performance of Si composite with HCMT by the carbonization of natural micro hollow milkweed to form an inner space. After carbonization at 900 °C for 2 h in N2 flow, inner diameter of HCMT obtained was about 10 μm. The electrochemical tests indicate that HCMT@Si@C1@C3 exhibits discharge capacity of 932.18 mAh/g at 0.5 A/g after 100 cycles.


Sign in / Sign up

Export Citation Format

Share Document