scholarly journals Reconstruction of the last cretaceous anoxic event in the Tarfaya Laayoune basin (South of Morocco): Biostratigraphy and Paleoenvironment of the Oum Debaa Formation

2021 ◽  
Vol 70 (2) ◽  
pp. 97-123
Author(s):  
Amine Bouwafoud ◽  
Abdelmajid Benbouziane ◽  
Touria Hssaida ◽  
Mustapha Mouflih

Abstract The Tarfaya-Laayoune coastal basin developed in a stable passive margin, where sedimentation occurred in shallow bays. During the Late Cretaceous, bituminous and phosphatic series were deposited in the shallow depression such as Sebkha Oum Debaa. In this work, the age of these Cretaceous layers are refined using a palynological approach and their paleoenvironments are described using organic geochemistry. Based on quantitative and qualitative palynological analyses, the sediments revealed a rich and diverse dinoflagellate cyst assemblage (65 taxa); among them 9 important biostratigraphic markers: Andalusiella inflata, Andalusiella ivoirensis, Andalusiella mauthei, Cerodinium diebelii, Cerodinium speciosum, Dinogymnium acuminatum, Odontochitina porifera, Trichodinium castanea, and Trithyrodinium evittii. According to the reported stratigraphic dinoflagellate taxa distribution, an age range of late Campanian to early Maastrichtian is herein proposed for the Oum Debaa Formation. This biostratigraphy update has been correlated to the Tethyan and Sub-Boreal domains. On the paleoenvironmental level, geochemical proxies have displayed an anoxic lagoon depositional which is dominated by an intermediate climate between hot / humid and arid with an often low paleoproductivity regime which induces redox conditions.

2021 ◽  
Author(s):  
Wajdi Belkhiria ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
Adnen Amiri ◽  
Mohamed Hédi Inoubli

<p>The Sahel basin in eastern Tunisia has been subject for hydrocarbon exploration since the early fifties. Despite the presence of a working petroleum system in the area, most of the drilled wells were dry or encountered oil shows that failed to give commercial flow rates. A better understanding of the tectono-sedimentary evolution of the Sahel basin is of great importance for future hydrocarbon prospectivity. In this contribution, we present integration of 2D seismic reflection profiles, exploration wells and new acquired gravity data. These subsurface data reveal that the Sahel basin developed as a passive margin during Jurassic-Early Cretaceous times and was later inverted during the Cenozoic Alpine orogeny. The occurrence of Triassic age evaporites and shales deposited during the Pangea breakup played a fundamental role in the structural style and tectono-sedimentary evolution of the study area. Seismic and gravity data revealed jointly important deep-seated extensional faults, almost along E-W and few along NNE–SSW and NW-SE directions, delimiting horsts and grabens structures. These syn-rift extensional faults controlled deposition, facies distribution and thicknesses of the Jurassic and Early cretaceous series. Most of these inherited deep-seated normal and transform faults are ornamented by different types of salt-related structures. The first phase of salt rising was initiated mainly along these syn-extensional faults in the Late Jurassic forming salt domes and continued into the Early and Late Cretaceous leading to salt-related diapir structures. During this period, the salt diapirism was accompanied by the development of salt withdrawal minibasins, characterized important growth strata due the differential subsidence. These areas represent important immediate kitchen areas to the salt-related structures. The later Late Cretaceous - Cenozoic shortening phases induced preferential rejuvenation of the diapiric structures and led to the inversion of former graben/half-graben structures and ultimately to vertical salt welds along salt ridges. These salt structures represent key elements that remains largely undrilled in the Sahel basin. Our results improve the understanding of salt growth in eastern Tunisia and consequently greatly impact the hydrocarbon prospectivity in the area.</p>


2021 ◽  
pp. M57-2021-29
Author(s):  
A.K. Khudoley ◽  
S.V. Frolov ◽  
G.G. Akhmanov ◽  
E.A. Bakay ◽  
S.S. Drachev ◽  
...  

AbstractAnabar-Lena Composite Tectono-Sedimentary Element (AL CTSE) is located in the northern East Siberia extending for c. 700 km along the Laptev Sea coast between the Khatanga Bay and Lena River delta. AL CTSE consists of rocks from Mesoproterozoic to Late Cretaceous in age with total thickness reaching 14 km. It evolved through the following tectonic settings: (1) Meso-Early Neoproterozoic intracratonic basin, (2) Ediacaran - Early Devonian passive margin, (3) Middle Devonian - Early Carboniferous rift, (4) late Early Carboniferous - latest Jurassic passive margin, (5) Permian foreland basin, (6) Triassic to Jurassic continental platform basin and (7) latest Jurassic - earliest Late Cretaceous foreland basin. Proterozoic and lower-middle Paleozoic successions are composed mainly by carbonate rocks while siliciclastic rocks dominate upper Paleozoic and Mesozoic sections. Several petroleum systems are assumed in the AL CTSE. Permian source rocks and Triassic sandstone reservoirs are the most important play elements. Presence of several mature source rock units and abundant oil- and gas-shows (both in wells and in outcrops), including a giant Olenek Bitumen Field, suggest that further exploration in this area may result in economic discoveries.


2019 ◽  
Vol 190 ◽  
pp. 5
Author(s):  
Benjamin Musavu Moussavou

A study of Albian bivalves from Madiela Formation in north of Gabonese coastal basin has been carried out from N’Toum quarry geological section. Four genera including six species are identified: Liopistha (Psilomya) sp. 1, ? Liopistha (Psilomya) sp. 2, Megaporomya sp., Neithea (Neithea) dutrugei (Coquand, 1862), Pleuromya sp. 1 and Pleuromya sp. 2. One morphotype is identified as Bivalvia gen. et sp. indet. The genus Megaporomya Ayoub-Hannaa et al., 2013 and all identified species, except Neithea (Neithea) dutrugei (Coquand, 1862), are found for the first time in Gabonese coastal basin. Now, a total of twelve species of bivalves have been reported from the Madiela Formation. In Gabon, the presence for the first time of genera Liopistha and Pleuromya in N’Toum quarry geological section which is assigned to the Albian permits us to expand their geographical distribution until N’Toum region, and their age range to Albian.


2018 ◽  
Vol 493 ◽  
pp. 136-152 ◽  
Author(s):  
Julien Danzelle ◽  
Laurent Riquier ◽  
François Baudin ◽  
Christophe Thomazo ◽  
Emmanuelle Pucéat

Sign in / Sign up

Export Citation Format

Share Document