scholarly journals Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

2013 ◽  
Vol 6 (4) ◽  
pp. 159-184 ◽  
Author(s):  
Anthony Samsel ◽  
Stephanie Seneff

ABSTRACT Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate’s strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate’s known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin’s lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent surge in kidney failure among agricultural workers in Central America. We conclude with a plea to governments to reconsider policies regarding the safety of glyphosate residues in foods

2004 ◽  
Vol 2 (3) ◽  
pp. 243-254 ◽  
Author(s):  
Diane Downie ◽  
Patrick Rooney ◽  
Morag McFadyen ◽  
Graeme Murray

2008 ◽  
Vol 21 (1) ◽  
pp. 220-231 ◽  
Author(s):  
Elizabeth M. J. Gillam

2020 ◽  
Vol 18 (1) ◽  
pp. 681-690
Author(s):  
Hassan A. Alhazmi ◽  
Adnan A. Kadi ◽  
Mohamed W. Attwa ◽  
Waquar Ahsan ◽  
Manal Mohamed Elhassan Taha ◽  
...  

AbstractClopidogrel (CLOP) is widely used worldwide for cardiovascular complications. CLOP is highly metabolized in the liver to its active metabolite by cytochrome P450 enzymes. Studies have shown that khat, an addictive substance, is a powerful inhibitor of cytochrome P450 enzymes and can influence the metabolism of drugs that are concomitantly used. Therefore, this study was designed to evaluate the effects of khat on the pharmacokinetics of CLOP in rats. In this study, rats were administered either CLOP alone or CLOP combined with khat and their plasma were obtained at different time intervals and analyzed using the newly developed and validated liquid chromatography with tandem mass spectrometry (LC-MS/MS) method using foretinib (FTB) as the internal standard. The corresponding peak area of the analyte versus FTB was used for calculating the peak ratio. The validated LC-MS/MS method resulted in the separation of the well-defined quantifiable peaks of CLOP, FTB, and CLOP metabolite within 7 min. Results showed a significant influence of khat on the peak ratio of CLOP metabolite, which was found to be significantly decreased (P < 0.05) in comparison to CLOP alone, suggesting significant decrease in the conversion of CLOP to its active metabolite due to the inhibition of CYP450 enzymes by khat. Therefore, there might be a need for dose adjustment for regular khat chewers using CLOP.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Lucie Dlouhá ◽  
Věra Adámková ◽  
Lenka Šedová ◽  
Věra Olišarová ◽  
Jaroslav A. Hubáček ◽  
...  

AbstractObjectivesCytochromes P450 play a role in human drugs metabolic pathways and their genes are among the most variable in humans. The aim of this study was to analyze genotype frequencies of five common polymorphisms of cytochromes P450 in Roma/Gypsy and Czech (non-Roma) population samples with Czech origin.MethodsRoma/Gypsy (n=302) and Czech subjects (n=298) were genotyped for CYP1A2 (rs762551), CYP2A6 (rs4105144), CYP2B6 (rs3745274) and CYP2D6 (rs3892097; rs1065852) polymorphisms using PCR-RFLP or Taqman assay.ResultsWe found significant allelic/genotype differences between ethnics in three genes. For rs3745274 polymorphism, there was increased frequency of T allele carriers in Roma in comparison with Czech population (53.1 vs. 43.7%; p=0.02). For rs4105144 (CYP2A6) there was higher frequency of T allele carriers in Roma in comparison with Czech population (68.7 vs. 49.8%; p<0.0001). For rs3892097 (CYP2D6) there was more carriers of the A allele between Roma in comparison with Czech population (39.2 vs. 38.2%; p=0.048). Genotype/allelic frequencies of CYP2D6 (rs1065852) and CYP1A2 (rs762551) variants did not significantly differ between the ethnics.ConclusionsThere were significant differences in allelic/genotype frequencies of some, but not all cytochromes P450 polymorphisms between the Czech Roma/Gypsies and Czech non-Roma subjects.


2001 ◽  
Vol 14 (9) ◽  
pp. 1170-1176 ◽  
Author(s):  
C. Clifford Conaway ◽  
Jacek Krzeminski ◽  
Shantu Amin ◽  
Fung-Lung Chung

Sign in / Sign up

Export Citation Format

Share Document