scholarly journals Wideband monopole antenna with dual band rejection characteristics

2021 ◽  
Vol 72 (4) ◽  
pp. 268-272
Author(s):  
Susmita Bala ◽  
P. Soni Reddy ◽  
Sushanta Sarkar ◽  
Partha Pratim Sarkar

Abstract A wideband printed monopole antenna with two rejection bands is proposed in this article. The antenna provides a wideband from 5.4 GHz to 17.2 GHz with two rejection bands covering 6.9 to 7.4 GHz and 8.3 to 9.2 GHz with two peak notch frequencies of 7.2 GHz and 8.6 GHz respectively. Tested peak gain at two peak notch frequencies of 7.2 GHz and 8.6 GHz are 2.5 dBi and −1.5 dBi respectively. These two rejection bands are effectively used to avoid undesired intrusion from the C band and the X band. The lower rejection band has been realized by cutting an open ring circular slot on the metal patch whereas U like slot has been inserted on the ground plane just beneath the feed line to achieve the upper rejection band. Simulated and tested S 11 parameter, gain, radiation efficiency, E-H radiation patterns, and surface currents of the antenna are presented here. The antenna uses small dimensions and it is very simple to design. The proposed antenna confirms that it is useful for short-range and fast data communication systems.

2019 ◽  
Vol 4 (2019) ◽  
pp. 50-54
Author(s):  
Zaw Myo Lwin ◽  
Thae Su Aye

This paper presents a rectangular-shaped printed monopole antenna with circular polarization for Wi-Fi (2.4–2.484 GHz) and WiMAX (3.3-3.7 GHz) bands. The antenna relies on asymmetric arrangement of the patch with respect to the microstrip feed, in order to generate circular polarization. Dual-band (Wi-Fi and WiMAX) operation is enabled by inserting a slit in the corner of the ground plane. Simulation results show a bandwidth increase of 15.9% (2.2–2.58 GHz) for Wi-Fi, and of 24.16% (3.13–3.99 GHz) for WiMAX applications. Furthermore, beamwidths at the axial ratio of 3 dB equal 48˚ and 51˚ for the x-z plane and y-z planes, respectively.


Author(s):  
Mohammad Alibakhshi-Kenari

In this article, a new construction of a small planar dual-band fed printed monopole antenna based on coplanar waveguide is suggested. Impedance matching for dual-band operations is obtained by embedding three vertical strips with different sizes in the U-shaped conductor-backed plane. The main problem of the designed antenna is the measuring of the specifications with the Agilent 8722ES Vector Network Analyzer, when the coaxial cable is connected to the antenna. Hence, in this paper a new method for decoupling the cable from the antenna is presented. This method is based on using the ferrite bead. The ferrite bead reduces the cable radiation, so that its position plays the important part in the antenna radiation characteristics. The fabricated antenna includes the benefits of the miniaturized size and dual-band operating specifications, so that the mentioned properties have been achieved without modifying the coplanar-waveguide-ground surface or radiator patch. The antenna has the small size of 15 × 15 × 0.8 mm3and bandwidths with S11 < −10 dB about 2.2 GHz (5.05–7.25 GHz) for WLAN-band or IEEE 802.11a-band and 5.2GHz (7.6–12.8 GHz) for X-band, which correspond to 36 and 51% practical bandwidths, respectively. The antenna measured peak gains are about 1.8 dBi at WLAN-band and 4.3 dBi at X-band.


2011 ◽  
Vol 54 (1) ◽  
pp. 240-242 ◽  
Author(s):  
S. T. Fan ◽  
Y. Z. Yin ◽  
W. Hu ◽  
K. Song ◽  
B. Li

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


Sign in / Sign up

Export Citation Format

Share Document