scholarly journals Integrated water resource management for mega city: a case study of Dhaka city, Bangladesh / Zintegrowane zarządzanie zasobami wodnymi dużych miast: przykład miasta Dakka w Bangladeszu

2013 ◽  
Vol 19 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Nasir Hossain ◽  
Khalid Md. Bahauddin

Abstract Dhaka the capital of Bangladesh is facing a serious water scarcity problem due to the big gap between demand and supply of water system. When accelerating water scarcities and pollution in and around urban centers are superimposed on issues like continuing urbanization, lack of investment funds for constructing and maintaining water infrastructures, high public debts, inefficient resources allocation processes, inadequate management capacities, poor governance, inappropriate institutional frameworks and inadequate legal and regulatory regimes, water management in the megacities poses a daunting task in the future. To overcome these water related problems, water can be a designing element for structuring future development with the combination of sustainable approaches for social and physical transformation, open up opportunities for water management system. Therefore an integrated approach like integrated water resource management (IWRM) system is required that responds to problems that are all interrelated. Alternate supply and demand management tools such as ground water recharge, rainwater harvesting, effective water pricing, reclaimed water use are suggested to meet the deficit of current supply system through the efficient use of the scarce resources available. Institutional reform and improved water planning are required to facilitate economic growth and social development. Finally, human resource development is identified as key factor for the sustainable effective management of this valuable resource.

2020 ◽  
Vol 200 ◽  
pp. 02019
Author(s):  
Nurul Ihsan Fawzi ◽  
Annisa Noyara Rahmasary ◽  
Ika Zahara Qurani

Sustainable utilization of peatland is required for balancing production and conservation efforts. On peatland, one of the main components to examine sustainability is understanding the carbon balance. This research was conducted in Pulau Burung, Riau, Indonesia, which has a long history of peatland utilization for agriculture. The sets of utilized data included historical data of water management on peatland represented by water table and subsidence rate, next to carbon density of peat soil. The results showed the function of integrated water resource management made the yearly average water table depth is 48 and 49 cm in 2018 and 2019, respectively. The range water table is between 31cm to 72 cm due to season variability and crop requirement. Consequently, the rate of annual subsidence is averaging at 1.7 cm with cumulative subsidence in 32 yr is 54.1 cm. Since the water never drained since the establishment, the subsidence rate of the first five years is averaging only at 3.3 cm yr–1. Low subsidence rates minimize annual carbon loss during the peatland utilization around (30 to 200) Mg CO2 ha–1 yr–1. In 32 yr, the water management in peatland utilization in Pulau Burung has prevented 2 000 Mg CO2 ha–1 to 4 925 Mg CO2 ha–1 loss compared to other cultivated areas in peatland. Further, this paper discusses the practice that resulted in low emission of coconut agriculture in Pulau Burung as one of sustainability dimensions, which support the other sustainability aspects, that is the thriving local livelihood.


2007 ◽  
Vol 7 (5-6) ◽  
pp. 185-192 ◽  
Author(s):  
M.T. Amin ◽  
M. Han

The goal of this paper is to identify the major outlines of innovative, integrated and decentralized water management practices, training, research, and development needs in various aspects of soft path water resource management in developing countries of Asia. The decentralized water strategies including science, regulations, training, government policies, and funding for some of the developing countries in Asian region are reviewed. There are two primary ways or paths of meeting water-related needs; one the “hard” path, and the other “soft” path that complements mainly decentralized and open decision-making, application of efficient technology, and environmental protection. One of the soft path decentralized solution being implemented in many developing countries of Asia is small scale rainwater harvesting and management and both government and non-government sectors are promoting the practice on a regional community and family basis. Overall, the paper aims to contribute to the ongoing development of environmentally sound and economically viable approaches to water management in the developing world.


Author(s):  
Georg Meran ◽  
Markus Siehlow ◽  
Christian von Hirschhausen

Abstract The concept of Integrated Water Resource Management (IWRM) was established, back in the 1930s, to address “optimal” water management, mainly from a technical perspective, but also taking into account social goals, such as the fulfillment of basic needs and the total welfare of the population. The chapter provides a comprehensive overview of issues related to IWRM. After a discussion of the various economic dimensions of water, we establish a basic model to analyze the value of water under different social welfare objective functions, including the human right to water. The technical-economic model also addresses questions of eco-hydrology, water recycling, groundwater management, and water quality management. The chapter also addresses water allocation along rivers and water transfers between watersheds. The chapter includes exercises and suggestions for further reading.


Sign in / Sign up

Export Citation Format

Share Document