scholarly journals Using of Laplacian Re-decomposition image fusion algorithm for glioma grading with SWI, ADC, and FLAIR images

2021 ◽  
Vol 27 (4) ◽  
pp. 261-269
Author(s):  
Amir Khorasani ◽  
Mohamad Bagher Tavakoli ◽  
Masih Saboori

Abstract Introduction: Based on the tumor’s growth potential and aggressiveness, glioma is most often classified into low or high-grade groups. Traditionally, tissue sampling is used to determine the glioma grade. The aim of this study is to evaluate the efficiency of the Laplacian Re-decomposition (LRD) medical image fusion algorithm for glioma grading by advanced magnetic resonance imaging (MRI) images and introduce the best image combination for glioma grading. Material and methods: Sixty-one patients (17 low-grade and 44 high-grade) underwent Susceptibility-weighted image (SWI), apparent diffusion coefficient (ADC) map, and Fluid attenuated inversion recovery (FLAIR) MRI imaging. To fuse different MRI image, LRD medical image fusion algorithm was used. To evaluate the effectiveness of LRD in the classification of glioma grade, we compared the parameters of the receiver operating characteristic curve (ROC). Results: The average Relative Signal Contrast (RSC) of SWI and ADC maps in high-grade glioma are significantly lower than RSCs in low-grade glioma. No significant difference was detected between low and high-grade glioma on FLAIR images. In our study, the area under the curve (AUC) for low and high-grade glioma differentiation on SWI and ADC maps were calculated at 0.871 and 0.833, respectively. Conclusions: By fusing SWI and ADC map with LRD medical image fusion algorithm, we can increase AUC for low and high-grade glioma separation to 0.978. Our work has led us to conclude that, by fusing SWI and ADC map with LRD medical image fusion algorithm, we reach the highest diagnostic accuracy for low and high-grade glioma differentiation and we can use LRD medical fusion algorithm for glioma grading.

2017 ◽  
pp. 711-723
Author(s):  
Vikrant Bhateja ◽  
Abhinav Krishn ◽  
Himanshi Patel ◽  
Akanksha Sahu

Medical image fusion facilitates the retrieval of complementary information from medical images and has been employed diversely for computer-aided diagnosis of life threatening diseases. Fusion has been performed using various approaches such as Pyramidal, Multi-resolution, multi-scale etc. Each and every approach of fusion depicts only a particular feature (i.e. the information content or the structural properties of an image). Therefore, this paper presents a comparative analysis and evaluation of multi-modal medical image fusion methodologies employing wavelet as a multi-resolution approach and ridgelet as a multi-scale approach. The current work tends to highlight upon the utility of these approaches according to the requirement of features in the fused image. Principal Component Analysis (PCA) based fusion algorithm has been employed in both ridgelet and wavelet domains for purpose of minimisation of redundancies. Simulations have been performed for different sets of MR and CT-scan images taken from ‘The Whole Brain Atlas'. The performance evaluation has been carried out using different parameters of image quality evaluation like: Entropy (E), Fusion Factor (FF), Structural Similarity Index (SSIM) and Edge Strength (QFAB). The outcome of this analysis highlights the trade-off between the retrieval of information content and the morphological details in finally fused image in wavelet and ridgelet domains.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 165
Author(s):  
M Shyamala Devi ◽  
P Balamurugan

Image processing technology requires moreover the full image or the part of image which is to be processed from the user’s point of view like the radius of object etc. The main purpose of fusion is to diminish dissimilar error between the fused image and the input images. With respect to the medical diagnosis, the edges and outlines of the concerned objects is more important than extra information. So preserving the edge features of the image is worth for investigating the image fusion. The image with higher contrast contains more edge-like features. Here we propose a new medical image fusion scheme namely Local Energy Match NSCT based on discrete contourlet transformation, which is constructive to give the details of curve edges. It is used to progress the edge information of fused image by dropping the distortion. This transformation lead to crumbling of multimodal image addicted to finer and coarser details and finest details will be decayed into unusual resolution in dissimilar orientation. The input multimodal images namely CT and MRI images are first transformed by Non Sub sampled Contourlet Transformation (NSCT) which decomposes the image into low frequency and high frequency elements. In our system, the Low frequency coefficient of the image is fused by image averaging and Gabor filter bank algorithm. The processed High frequency coefficients of the image are fused by image averaging and gradient based fusion algorithm. Then the fused image is obtained by inverse NSCT with local energy match based coefficients. To evaluate the image fusion accuracy, Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Correlation Coefficient parameters are used in this work .


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Huang ◽  
Xi’an Feng ◽  
Jionghui Jiang

According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.


Sign in / Sign up

Export Citation Format

Share Document