Two-point boundary value problems for the generalized Bagley-Torvik fractional differential equation

2013 ◽  
Vol 11 (3) ◽  
Author(s):  
Svatoslav Staněk

AbstractWe investigate the fractional differential equation u″ + A c D α u = f(t, u, c D μ u, u′) subject to the boundary conditions u′(0) = 0, u(T)+au′(T) = 0. Here α ∈ (1, 2), µ ∈ (0, 1), f is a Carathéodory function and c D is the Caputo fractional derivative. Existence and uniqueness results for the problem are given. The existence results are proved by the nonlinear Leray-Schauder alternative. We discuss the existence of positive and negative solutions to the problem and properties of their derivatives.

2021 ◽  
Vol 2 (1) ◽  
pp. 62-71
Author(s):  
Saleh Redhwan ◽  
Sadikali L. Shaikh

This article deals with a nonlinear implicit fractional differential equation with nonlocal integral-multipoint boundary conditions in the frame of Hilfer fractional derivative. The existence and uniqueness results are obtained by using the fixed point theorems of Krasnoselskii and Banach. Further, to demonstrate the effectiveness of the main results, suitable examples are granted.


2019 ◽  
Vol 34 (01) ◽  
pp. 2050015 ◽  
Author(s):  
C. Vinothkumar ◽  
J. J. Nieto ◽  
A. Deiveegan ◽  
P. Prakash

We consider the hyperbolic type fuzzy fractional differential equation and derive the second-order fuzzy fractional differential equation using scaling transformation. We present a theoretical and a numerical method to find the invariant solutions of such equations. Also, we prove the existence and uniqueness results using Banach fixed point theorem. Numerical solutions are approximated using finite difference method. Finally, numerical examples are given to illustrate the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Karim Guida ◽  
Lahcen Ibnelazyz ◽  
Khalid Hilal ◽  
Said Melliani

In this paper, we investigate the solutions of coupled fractional pantograph differential equations with instantaneous impulses. The work improves some existing results and contributes toward the development of the fractional differential equation theory. We first provide some definitions that will be used throughout the paper; after that, we give the existence and uniqueness results that are based on Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Two examples are given in the last part to support our study.


Author(s):  
Mohamed Houas ◽  
Khellaf Ould Melha

In this paper, we have studied existence and uniqueness of solutions for a coupled system of multi-point boundary value problems for Hadamard fractional differential equations. By applying principle contraction and Shaefer's fixed point theorem new existence results have been obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Qiuping Li ◽  
Shurong Sun ◽  
Ping Zhao ◽  
Zhenlai Han

We discuss the initial value problem for the nonlinear fractional differential equationL(D)u=f(t,u),  t∈(0,1],  u(0)=0, whereL(D)=Dsn-an-1Dsn-1-⋯-a1Ds1,0<s1<s2<⋯<sn<1, andaj<0,j=1,2,…,n-1,Dsjis the standard Riemann-Liouville fractional derivative andf:[0,1]×ℝ→ℝis a given continuous function. We extend the basic theory of differential equation, the method of upper and lower solutions, and monotone iterative technique to the initial value problem. Some existence and uniqueness results are established.


2013 ◽  
Vol 21 (3) ◽  
pp. 33-42 ◽  
Author(s):  
Ahmed Anber ◽  
Soumia Belarbi

AbstractIn this paper, we study a class of boundary value problems of nonlinear fractional differential equations with integral boundary conditions. Some new existence and uniqueness results are obtained by using Banach fixed point theorem. Other existence results are also presented by using Krasnoselskii theorem.


2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Fang Li ◽  
Chenglong Wang ◽  
Huiwen Wang

The aim of this paper is to establish the existence and uniqueness results for differential equations of Hilfer-type fractional order with variable coefficient. Firstly, we establish the equivalent Volterra integral equation to an initial value problem for a class of nonlinear fractional differential equations involving Hilfer fractional derivative. Secondly, we obtain the existence and uniqueness results for a class of Hilfer fractional differential equations with variable coefficient. We verify our results by providing two examples.


Sign in / Sign up

Export Citation Format

Share Document