On the minimal length of the longest trail in a fixed edge-density graph

2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Vajk Szécsi

AbstractA nearly sharp lower bound on the length of the longest trail in a graph on n vertices and average degree k is given provided the graph is dense enough (k ≥ 12.5).

2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Michael Novack ◽  
Xiaodong Yan

1980 ◽  
Vol 17 (04) ◽  
pp. 1133-1137 ◽  
Author(s):  
A. O. Pittenger

Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


10.37236/582 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Victor Falgas-Ravry

Let $\Omega$ be a finite set and let $\mathcal{S} \subseteq \mathcal{P}(\Omega)$ be a set system on $\Omega$. For $x\in \Omega$, we denote by $d_{\mathcal{S}}(x)$ the number of members of $\mathcal{S}$ containing $x$. A long-standing conjecture of Frankl states that if $\mathcal{S}$ is union-closed then there is some $x\in \Omega$ with $d_{\mathcal{S}}(x)\geq \frac{1}{2}|\mathcal{S}|$. We consider a related question. Define the weight of a family $\mathcal{S}$ to be $w(\mathcal{S}) := \sum_{A \in \mathcal{S}} |A|$. Suppose $\mathcal{S}$ is union-closed. How small can $w(\mathcal{S})$ be? Reimer showed $$w(\mathcal{S}) \geq \frac{1}{2} |\mathcal{S}| \log_2 |\mathcal{S}|,$$ and that this inequality is tight. In this paper we show how Reimer's bound may be improved if we have some additional information about the domain $\Omega$ of $\mathcal{S}$: if $\mathcal{S}$ separates the points of its domain, then $$w(\mathcal{S})\geq \binom{|\Omega|}{2}.$$ This is stronger than Reimer's Theorem when $\vert \Omega \vert > \sqrt{|\mathcal{S}|\log_2 |\mathcal{S}|}$. In addition we construct a family of examples showing the combined bound on $w(\mathcal{S})$ is tight except in the region $|\Omega|=\Theta (\sqrt{|\mathcal{S}|\log_2 |\mathcal{S}|})$, where it may be off by a multiplicative factor of $2$. Our proof also gives a lower bound on the average degree: if $\mathcal{S}$ is a point-separating union-closed family on $\Omega$, then $$ \frac{1}{|\Omega|} \sum_{x \in \Omega} d_{\mathcal{S}}(x) \geq \frac{1}{2} \sqrt{|\mathcal{S}| \log_2 |\mathcal{S}|}+ O(1),$$ and this is best possible except for a multiplicative factor of $2$.


Author(s):  
Amir Taghi Karimi

The sum-connectivity index of a graph [Formula: see text] is defined as the sum of weights [Formula: see text] over all edges [Formula: see text] of [Formula: see text], where [Formula: see text] and [Formula: see text] are the degrees of the vertices [Formula: see text] and [Formula: see text] in [Formula: see text], respectively. A graph [Formula: see text] is called quasi-tree, if there exists [Formula: see text] such that [Formula: see text] is a tree. In the paper, we give a sharp lower bound on the sum-connectivity index of quasi-tree graphs.


Sign in / Sign up

Export Citation Format

Share Document