scholarly journals Exponential coordinates and regularity of groupoid heat kernels

2014 ◽  
Vol 12 (2) ◽  
Author(s):  
Bing So

AbstractWe prove that on an asymptotically Euclidean boundary groupoid, the heat kernel of the Laplacian is a smooth groupoid pseudo-differential operator.

Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2457-2469
Author(s):  
Akhilesh Prasad ◽  
S.K. Verma

In this article, weintroduce a new index transform associated with the cone function Pi ??-1/2 (2?x), named as Mehler-Fock-Clifford transform and study its some basic properties. Convolution and translation operators are defined and obtained their estimates under Lp(I, x-1/2 dx) norm. The test function spaces G? and F? are introduced and discussed the continuity of the differential operator and MFC-transform on these spaces. Moreover, the pseudo-differential operator (p.d.o.) involving MFC-transform is defined and studied its continuity between G? and F?.


2016 ◽  
Vol Volume 23 - 2016 - Special... ◽  
Author(s):  
Abdelwaheb Ifa ◽  
Michel Rouleux

International audience We revisit in this Note the well known Bohr-Sommerfeld quantization rule (BS) for a 1-D Pseudo-differential self-adjoint Hamiltonian within the algebraic and microlocal framework of Helffer and Sjöstrand; BS holds precisely when the Gram matrix consisting of scalar products of some WKB solutions with respect to the " flux norm " is not invertible. Dans le cadre algébrique et microlocal élaboré par Helffer et Sjöstrand, on propose une ré-écriture de la règle de quantification de Bohr-Sommerfeld pour un opérateur auto-adjoint h-Pseudo-différentiel 1-D; elle s'exprime par la non-inversibilité de la matrice de Gram d'un couple de solutions WKB dans une base convenable, pour le produit scalaire associé à la " norme de flux " .


Author(s):  
Jean-Michel Bismut

This chapter establishes rough estimates on the heat kernel rb,tX for the scalar hypoelliptic operator AbX on X defined in the preceding chapter. By rough estimates, this chapter refers to just the uniform bounds on the heat kernel. The chapter also obtains corresponding bounds for the heat kernels associated with operators AbX and another AbX over ̂X. Moreover, it gives a probabilistic construction of the heat kernels. This chapter also explains the relation of the heat equation for the hypoelliptic Laplacian on X to the wave equation on X and proves that as b → 0, the heat kernel rb,tX converges to the standard heat kernel of X.


Author(s):  
Jean-Michel Bismut
Keyword(s):  

This chapter proves the formula that was stated in Chapter 6. It first states various estimates on the hypoelliptic heat kernels, which are valid for b ≥ 1 and then makes a natural rescaling on the coordinates parametrizing ̂X. Next, the chapter introduces a conjugation on the Clifford variables and shows that the norm of the term defining the conjugation can be adequately controlled. The chapter then introduces a conjugate ℒA,bX of another ℒA,bX and its associated heat kernel. Afterward, the chapter obtains the limit as b → +∞ of the rescaled heat kernel, thus establishing the formula in Chapter 6. After further computations, this chapter states a result on convergence of heat kernels.


1999 ◽  
Vol 42 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Hongming Ding

AbstractWe obtain an explicit formula for heat kernels of Lorentz cones, a family of classical symmetric cones. By this formula, the heat kernel of a Lorentz cone is expressed by a function of time t and two eigenvalues of an element in the cone. We obtain also upper and lower bounds for the heat kernels of Lorentz cones.


Sign in / Sign up

Export Citation Format

Share Document