A simple formula for shape and depth determination from residual gravity anomalies

2007 ◽  
Vol 55 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Khalid S. Essa
2020 ◽  
Author(s):  
Mohamed Abdrabou ◽  
Maha Abdelazeem ◽  
Mohamed Gobashy

<p>Geophysical data such as gravity data can be inverted to get a subsurface image, which depicts the subsurface distribution of physical property. Consequently, inversion of geophysical data has an effective role for interpreting measured geophysical anomalies in hydrocarbons and mineral applications. Interest about ore deposits exploration and sedimentary basins interpretation is associated with their economic importance. The presence of sedimentary basins gives lower amplitude of gravity anomalies with negative signals, due to the negative density contrast as these sedimentary basins have lower density than that of the neighboring basement rocks. In prospecting ore deposits, studying the spatial distributions of densities in the subsurface is essential of significance.Two dimensional forward modelling strategy can be done via locating the rectangular cells with fixed size directly underneath the location of the observed data points using regular grid discretization. Density vector of the subsurface rectangular cells are obtained via solving the 2D gravity inverse problem by optimizing an objective function (i.e., the differences between observed and inverted residual gravity data sets). In this work, a hybrid algorithm merging a bat (BAT) algorithm with the preconditioned conjugate gradient (PCG) method is suggested as a mean for inverting surface gravity anomalies to obtain the density distribution in the subsurface. Like the hybrid, minimization algorithm has the capability to make use of the advantages of both two techniques. In this hybrid algorithm, the BAT algorithm was utilized to construct an initial solution for the PCG technique. The BAT optimizer acts as a rapid build-up of the model, whereas the second modifies the finer model approximated solution. This modern algorithm was firstly applied on a free-noise synthetic data and to a noisy data with three different levels of random noise, and good results obtained through the inversion. The validity and applicability of our algorithm are applied to real residual gravity anomalies across the San Jacinto graben in southern California, USA, and Sierra Mayor - Sierra Pinta graben, USA and prospecting of the Poshi Cu-Ni deposits, Xinjiang, northwest China. The obtained results are in excellent accordance with those produced by researchers in the published literature.</p><p> </p><p><strong>Keywords: </strong>Gravity data, 2D Inversion, BAT algorithm, Preconditioned Conjugate Gradient, Sedimentary Basins.</p>


Geophysics ◽  
1957 ◽  
Vol 22 (3) ◽  
pp. 643-645 ◽  
Author(s):  
L. F. Ivanhoe

The effect of varying surface densities on gravity anomalies is a more common problem in areas of topographical relief than is generally recognized. There is an unjustified tendency to assume that gravity maps are unique and final, even though one basic assumption (density of surface rocks) is inherent in all gravity maps. The use of incorrect elevation factors will produce gravity anomalies over any topographic feature. Both positive and negative gravity anomalies can be produced by either a topographic hill or valley depending on the degree of error in the elevation factor. These “elevation factor anomalies” are especially troublesome on residual gravity maps. The interpretation of gravity data should always include an analysis of the elevation factor effect as well as a study of the surface geology.


Sign in / Sign up

Export Citation Format

Share Document