Determination of dissociation degrees of K3NbF8 and K3TaF8 by thermodynamic analysis of subsystems of the KF-K2NbF7 and KF-K2TaF7 systems

2008 ◽  
Vol 62 (6) ◽  
Author(s):  
Ladislav Kosa ◽  
Ivo Proks

AbstractA special form of the LeChatelier-Shreder equation describing the equilibrium between the crystalline phase and the melt in system A-AB in which the substance AB partially dissociates upon melting was applied to systems KF-K3NbF8, K2NbF7-K3NbF8 and to KF-K3TaF8, K2TaF7-K3TaF8 subsystems of the binary systems KF-K2NbF7 and KF-K2TaF7 in which the additive compounds K3NbF8 and K3TaF8 are formed. Using the phase diagram of the system KF-K2NbF7 determined by McCawley and Barclay (1971) and the values of the fusion enthalpy of K3NbF8 taken from literature, the intervals of the dissociation degree values of K3NbF8 for both branches of the liquidus curve of K3NbF8 were calculated. The calculated values of the dissociation degree depend on the coordinates of the liquidus curve of K3NbF8 of the pertinent phase diagram, on its used branch and section, and on the value of the fusion enthalpy of K3NbF8. For the measured fusion enthalpy of K3NbF8 (57 kJ mol−1), a common interval of the dissociation degree values of K3NbF8 for both branches of the liquidus curve of K3NbF8 is 0.71–0.72. Similarly, intervals of the dissociation degree values of K3TaF8 for both branches of the liquidus curve of K3TaF8 were calculated using the phase diagram of the system KF-K2TaF7 determined by Boča et al. (2007) and the measured fusion enthalpy of K3TaF8 ((52 ± 2) kJ mol−1). The error of the determination of the fusion enthalpy of K3TaF8, the common interval of the dissociation degree values of K3TaF8 for both branches of the liquidus curve of K3TaF8 is 0.68–0.69.

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Fukun Lai ◽  
Alex MacGregor ◽  
Justin Fraczek

Flexibility is the most important requirement of the pipe system. A general approach is to include pipe bends in the system to provide flexibility. The design of the pipe routing requires either rigorous pipe stress analysis or hand calculation based on the beam theory and finite element method. In this paper, a simple methodology has been developed for pipe routing to provide flexibility to absorb thermal expansion and other secondary displacements. The method uses the basic theory of beam and based on the data fitting from the pipe stress analysis results. This method provides general and simple equations of the common bends in the pipeline industry including L, Z, and U bends, for determination of the minimum length requirement for enough flexibility.


1993 ◽  
Vol 90 ◽  
pp. 249-254 ◽  
Author(s):  
C Wolverton ◽  
M Asta ◽  
S Ouannasser ◽  
H Dreyssé ◽  
D de Fontaine

1984 ◽  
Vol 62 (3) ◽  
pp. 457-474 ◽  
Author(s):  
A. D. Pelton ◽  
C. W. Bale ◽  
P. L. Lin

Phase diagrams and thermodynamic properties of five additive molten salt ternary systems and nine reciprocal molten salt ternary systems containing the ions Li+, Na+, [Formula: see text], OH− are calculated from the thermodynamic properties of their binary subsystems which were obtained previously by a critical assessment of the thermodynamic data and the phase diagrams in these binary systems. Thermodynamic properties of ternary liquid phases are estimated from the binary properties by means of the Conformal Ionic Solution Theory. The ternary phase diagrams are then calculated from these thermodynamic properties by means of computer programs designed for the purpose. It is found that a ternary phase diagram can generally be calculated in this way with a maximum error about twice that of the maximum error in the binary phase diagrams upon which the calculations are based. If, in addition, some reliable ternary phase diagram measurements are available, these can be used to obtain small ternary correction terms. In this way, ternary phase diagram measurements can be smoothed and the isotherms drawn in a thermodynamically correct way. The thermodynamic approach permits experimental data to be critically assessed in the light of thermodynamic principles and accepted solution models. A critical assessment of error limits on all the calculated ternary diagrams is made, and suggestions as to which composition regions merit further experimental study are given.


1906 ◽  
Vol 26 ◽  
pp. 32-45
Author(s):  
J. G. Milne
Keyword(s):  

During the excavations of Messrs. Hogarth Grenfell and Hunt for the Egypt Exploration Fund in the winter of 1895–6 on the site of Karanis (Kom Ushim) in the Fayum, a considerable number of clay-sealings were found, mainly in the cellars of the Roman houses. These were recently put in my hands for investigation and offer some interesting material.The sealings have evidently come from various kinds of articles: in many instances the clay is too much broken for any determination of the shape which it had taken to be possible; but among the better preserved pieces are examples from the mouths of bottles, some of which have been squeezed down into the neck like a cork, others placed over a linen covering, sometimes tied down with cord: others are from the flat sides of wooden boxes, often showing the marks of cord: others again from parcels of irregular shape, in some cases seemingly wrapped in papyrus. The common points of all are that they consist of lumps of Nile-mud, and that they have been impressed, while the clay was damp, with signets, which were presumably those of the merchants who forwarded the goods upon which the sealings were placed.


2016 ◽  
Vol 70 (12) ◽  
Author(s):  
Leonid Serafimov ◽  
Anastasia Frolkova

AbstractA method for the determination of vapor–liquid phase diagram structure of five-component systems based on the analysis of types and Poincare indexes of singular points of the geometric scan and full structure of the concentration simplex is proposed. Validity of the proposed method was demonstrated by vapor–liquid equilibrium modeling in five-component mixtures: ethanol + water + toluene + butanol + chlorbenzene and acetone + chloroform + ethanol + cyclohexane + water.


1991 ◽  
Vol 169 (1-4) ◽  
pp. 493-494 ◽  
Author(s):  
S.W. Lin ◽  
Q.Z. Ran ◽  
S. Adenwalla ◽  
Z. Zhao ◽  
J.B. Ketterson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document