magnetic phase diagram
Recently Published Documents


TOTAL DOCUMENTS

1025
(FIVE YEARS 87)

H-INDEX

54
(FIVE YEARS 5)

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 2
Author(s):  
Xinmin You ◽  
Michael Maschek ◽  
Niels Harmen H. van Dijk ◽  
Ekkes Brück

The phase diagram of the magnetocaloric MnxFe2−xP1−ySiy quaternary compounds was established by characterising the structure, thermal and magnetic properties in a wide range of compositions (for a Mn fraction of 0.3 ≤ x < 2.0 and a Si fraction of 0.33 ≤ y ≤ 0.60). The highest ferromagnetic transition temperature (Mn0.3Fe1.7P0.6Si0.4, TC = 470 K) is found for low Mn and high Si contents, while the lowest is found for low Fe and Si contents (Mn1.7Fe0.3P0.6Si0.4, TC = 65 K) in the MnxFe2−xP1−ySiy phase diagram. The largest hysteresis (91 K) was observed for a metal ratio close to Fe:Mn = 1:1 (corresponding to x = 0.9, y = 0.33). Both Mn-rich with high Si and Fe-rich samples with low Si concentration were found to show low hysteresis (≤2 K). These compositions with a low hysteresis form promising candidate materials for thermomagnetic applications.


2021 ◽  
Vol 22 (24) ◽  
pp. 13364
Author(s):  
Karol Szałowski

Recent experimental studies proved the presence of the triplet spin state in atomically precise heptauthrene nanostructure of nanographene type (composed of two interconnected triangles with zigzag edge). In the paper, we report the computational study predicting the possibility of controlling this spin state with an external in-plane electric field by causing the spin switching. We construct and discuss the ground state magnetic phase diagram involving S=1 (triplet) state, S=0 antiferromagnetic state and non-magnetic state and predict the switching possibility with the critical electric field of the order of 0.1 V/Å. We discuss the spin distribution across the nanostructure, finding its concentration along the longest zigzag edge. To model our system of interest, we use the mean-field Hubbard Hamiltonian, taking into account the in-plane external electric field as well as the in-plane magnetic field (in a form of the exchange field from the substrate). We also assess the effect of uniaxial strain on the magnetic phase diagram.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Won-Young Choi ◽  
Woosuk Yoo ◽  
Myung-Hwa Jung

AbstractTopological spin textures such as magnetic skyrmions have attracted considerable interest due to their potential application in spintronic devices. However, there still remain several challenges to overcome before their practical application, for instance, achieving high scalability and thermal stability. Recent experiments have proposed a new class of skyrmion materials in the Heusler family, Mn1.4Pt0.9Pd0.1Sn and Mn2Rh0.95Ir0.05Sn, which possess noncollinear magnetic structures. Motivated by these experimental results, we suggest another Heusler compound hosted by Mn3Ga to overcome the above limitations. We fabricate Mn3-xPdxGa thin films, focusing on the magnetic compensation point. In Mn2.3Pd0.7Ga, we find a spin-reorientation transition around TSR = 320 K. Below the TSR, we observe the topological Hall effect and a positive magnetic entropy change, which are the hallmarks of a chiral noncollinear spin texture. By integrating all the data, we determine the magnetic phase diagram, displaying a wide chiral noncollinear spin phase even at room temperature. We believe that this compensated ferrimagnet shows promise for opening a new avenue toward chiral spin-based, high-density, and low-power devices.


2021 ◽  
Vol 104 (17) ◽  
Author(s):  
A. Vl. Andrianov ◽  
E. Mendive-Tapia ◽  
A. I. Beskrovnyi ◽  
J. B. Staunton

2021 ◽  
Vol 104 (17) ◽  
Author(s):  
Santanu Pakhira ◽  
M. A. Tanatar ◽  
Thomas Heitmann ◽  
David Vaknin ◽  
D. C. Johnston

2021 ◽  
Vol 104 (17) ◽  
Author(s):  
W. Xie ◽  
S. S. Luo ◽  
H. Su ◽  
X. Y. Zheng ◽  
Z. Y. Nie ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhe Wang ◽  
Ignacio Gutiérrez-Lezama ◽  
Dumitru Dumcenco ◽  
Nicolas Ubrig ◽  
Takashi Taniguchi ◽  
...  

AbstractRecent experiments on van der Waals antiferromagnets have shown that measuring the temperature (T) and magnetic field (H) dependence of the conductance allows their magnetic phase diagram to be mapped. Similarly, experiments on ferromagnetic CrBr3 barriers enabled the Curie temperature to be determined at H = 0, but a precise interpretation of the magnetoconductance data at H ≠ 0 is conceptually more complex, because at finite H there is no well-defined phase boundary. Here we perform systematic transport measurements on CrBr3 barriers and show that the tunneling magnetoconductance depends on H and T exclusively through the magnetization M(H, T) over the entire temperature range investigated. The phenomenon is reproduced by the spin-dependent Fowler–Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr3 conduction band. Our analysis unveils a new approach to probe quantitatively different properties of atomically thin ferromagnetic insulators related to their magnetization by performing simple conductance measurements.


Author(s):  
Samuel J R Holt ◽  
Aleš Štefančič ◽  
James Loudon ◽  
Martin R Lees ◽  
Geetha Balakrishnan

Abstract Skyrmions in confined geometries have been a subject of increasing interest due to the different properties that they exhibit compared to their bulk counterparts. In this study, nanoparticles of skyrmion-hosting Cu2OSeO3 have been synthesised using a precipitation method followed by thermal treatment. This enables us to produce nanoparticles whose mean size varies from tens of nanometers to a few micrometers by varying the temperature and duration of the thermal decomposition of the precursor. These sizes span the ∼ 63 nm diameter of skyrmions in Cu2OSeO3, allowing investigations into how the magnetic state changes when the size of the geometrical confinement is similar to and smaller than the size of an isolated magnetic skyrmion. AC susceptibility measurements performed on nanoparticles with a size distribution from 15 to 250 nm show a change in the magnetic phase diagram compared to bulk Cu2OSeO3.


Author(s):  
Abja Keshar Kar ◽  
Bidisa Chattopadhyay ◽  
Ratnadwip Singha ◽  
Abhisikta Barman ◽  
Md Azaharuddin Ahmed ◽  
...  

Abstract We have studied the effect of doping of both magnetic (Co) and nonmagnetic (Mg) ions at the Cu site on phase transition in polycrystalline α-Cu2V2O7 through structural, magnetic, and electrical measurements. x-ray diffraction reveals that Mg doping triggers an onset of α- to β-phase structural transition in Cu2−xMgxV2O7 above a critical Mg concentration xc=0.15, and both the phases coexist up to x=0.25. Cu2V2O7 possesses a non-centrosymmetric(NCSM) crystal structure and antiferromagnetic (AFM) ordering along with a non-collinear spin structure in the α phase, originated from the microscopic Dzyaloshinskii-Moriya(DM) interaction between the neighboring Cu spins. Accordingly, a weak ferromagnetic behavior has been observed up to x=0.25. However, beyond this concentration, Cu2−xMgxV2O7 exhibits complex magnetic properties. A clear dielectric anomaly is observed in α-Cu2−xMgxV2O7 around the magnetic transition temperature, which loses its prominence with the increase in Mg doping. The analysis of experimental data shows that the magnetoelectric coupling is nonlinear, which is in agreement with the Landau theory of continuous phase transitions. Co doping, on the other hand, initiates a sharp α to β phase transition around the same critical concentration xc=0.15 in Cu2−xCoxV2O7 but the ferromagnetic behavior is very weak and can be detected only up to x=0.10. We have drawn the magnetic phase diagram which indicates that the rate of suppression in transition temperature is the same for both types of doping, magnetic (Co) and nonmagnetic (Zn/Mg).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Martin ◽  
L. J. Bannenberg ◽  
M. Deutsch ◽  
C. Pappas ◽  
G. Chaboussant ◽  
...  

AbstractWe study the evolution of the low-temperature field-induced magnetic defects observed under an applied magnetic field in a series of frustrated amorphous ferromagnets (Fe$$_{1-x}$$ 1 - x Mn$$_{x}$$ x )$$_{75}$$ 75 P$$_{16}$$ 16 B$$_{3}$$ 3 Al$$_{3}$$ 3 (“a-Fe$$_{1-x}$$ 1 - x Mn$$_{x}$$ x ”). Combining small-angle neutron scattering and Monte Carlo simulations, we show that the morphology of these defects resemble that of quasi-bidimensional spin vortices. They are observed in the so-called “reentrant” spin-glass (RSG) phase, up to the critical concentration $$x_{\mathrm{C}} \approx 0.36$$ x C ≈ 0.36 which separates the RSG and “true” spin glass (SG) within the low temperature part of the magnetic phase diagram of a-Fe1−xMnx. These textures systematically decrease in size with increasing magnetic field or decreasing the average exchange interaction, and they finally disappear in the SG sample ($$x = 0.41$$ x = 0.41 ), being replaced by field-induced correlations over finite length scales. We argue that the study of these nanoscopic defects could be used to probe the critical line between the RSG and SG phases.


Sign in / Sign up

Export Citation Format

Share Document