sigma phase
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 66)

H-INDEX

33
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 455
Author(s):  
Lucie Pilsová ◽  
Jakub Horváth ◽  
Vladimír Mára

This paper describes the influence of technological treatments (i.e., bending or welding) on the structural stability of SUPER304H austenitic steel used in reheaters and superheaters in fossil fuel power plants. Although the worldwide trend is transitioning to green power sources, the lifetime of existing power plants has to be prolonged until the transition is complete. Experimental material was tested in as-received state (straight tubes), bends, and homogeneous weld joints. Part of the specimens was solution-annealed after the technological operation. Afterwards, all the samples were thermally aged in furnace (650, 675 and 700 °C) for 7560–20,000 h. For comparison, bent specimens were placed at experimental sites on an operating powerplant for 10,000+ h. The long-term aging causes the formation of Cr-based carbides on the grain boundaries along with the Fe-Cr sigma phase. Combination of elevated temperature and residual stress accelerates formation of the sigma phase. This can be prevented by solution-annealing after bending. Mechanical properties were evaluated by Vickers hardness and tensile tests. The microstructure was observed using light optical microscopy (LOM) and scanning electron microscopy (SEM) with the energy-dispersive X-ray detector (EDXS). Electron backscatter diffraction (EBSD) and X-ray powder diffraction (XRPD) were used to characterize the brittle phases.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2045
Author(s):  
Odd M. Akselsen ◽  
Ruben Bjørge ◽  
Håkon Wiik Ånes ◽  
Xiaobo Ren ◽  
Bård Nyhus

In the present study, the thermal program in wire and arc additive manufacturing has been varied in terms of heat input and interpass temperature. Three walls were completed with subsequent Charpy V impact toughness and crack-tip opening displacement fracture toughness, together with a detailed microstructure characterization using light microscopy and scanning and transmission electron microscopy. The results clearly demonstrate that the formation of sigma phase may deteriorate the toughness of superduplex components. Such formation may take place under prolonged cooling time, which may occur when subsequent passes are deposited with too high interpass temperatures. This transformation behavior may limit the productivity in additive manufacturing of such steels and care must be taken in selection of proper combination of arc energy and interpass temperature.


Author(s):  
Oscar Öhlin ◽  
Guocai Chai ◽  
Raveendra Siriki

AbstractSandvik 3R60™ is an AISI 316/316L type of stainless steel. In this paper, the structural stability of the material under long-term ageing or creep test has been studied. The material had been creep tested with a stress of 45 MPa at 700 °C. The predicted rupture time for the creep specimen was about 100,000 h; however, the specimen broke first after 240,131 h. The oxidation behavior and structural stability in both aged and creep-tested samples were studied using SEM/EDS, EBSD and ECCI techniques. Thin oxide layers near the sample surface are mainly spinel oxides and eskolaite (Cr2O3). Sigma phase, χ-phase, Eta phase, M23C6 and Cr2N have been observed in the matrix of the samples. In the crept sample, the amount of sigma phase has increased, so has Eta phase and χ-phase as well. Thermo-Calc evaluation can reasonably predict precipitation of sigma phase, Eta phase and M23C6, but not χ-phase and Cr2N phases. Creep crack initiation behavior has been studied. It is mainly noticed to start at surface oxide layer or coarse sigma particles at grain boundary or triple point. Additionally, it is also observed that the presence of a thin Cr2O3 layer between the oxide and matrix along with discontinuous sigma phase distribution at grain boundary that will reduce the risk for creep crack initiation. Further, the crack propagation behavior has also been discussed.


2021 ◽  
Vol 7 (4) ◽  
pp. 49-67
Author(s):  
Nhuan Hoang ◽  
Thuc Phuong Nguyen Thi ◽  
Xuan Thi Hoang ◽  
Xuan Vinh Tran ◽  
Thi Tuyen Hoang

In the PWR pressure water reactor (PWR), stainless steel is used in many important parts in both primary and secondary water circuits. There are not enough necessary condition to experiment in extremly conditons of nuclear reactor, such as high temperature, high pressure in radiation environment in Vietnam. Therefore, in order to study the world's technology for evaluating metal materials, it is necessary to have basic research on SS304 stainless steel objects. This study deals with SS304L stainless steel, which is low carbon steel used in nuclear power plants. The material used in this work was stainless steel 304 with low C content (SS304L). AISI stainless steel 304L plates were cut by wire-cutting machine into standard specimens and then heat-treated under different conditions. Finally, the post-treated specimens were tested by Rockwell hardness tester, tensile strength tester, and Charpy impact tester to verify the mechanical properties. The results showed that when heating the specimens in the range of 300÷900oC, cooling in the furnace to the room temperature, the value of hardness changed insignificantly. When increasing heating temperature, the yield strength and ultimate tensile strength values of the specimens decreased while the relative elongation values were almost unchanged. It means that under tested heat treatment conditions, the higher the heating temperature is, the worse mechanical properties are. The reason for this might be the appearance of the brittle sigma phase. Heat treatment results of SS304 specimens with the normalizing conditions at 900oC also shows the possibility to remove the sigma phase in the steel composition.


Author(s):  
Ana Gabriela Conceição dos Santos ◽  
Nathan Fernandes Ignácio ◽  
Maisa Silva Fernandes ◽  
Diego Magalhães Baía ◽  
Fernanda Nascimento Moreira ◽  
...  

2021 ◽  
Vol 10 (8) ◽  
pp. e24910817369
Author(s):  
Isabela Dainezi ◽  
Spyridion Haritos Borges ◽  
Luciola Lucena de Sousa ◽  
Neide Aparecida Mariano

Duplex stainless steels correspond to a class of steel in which the microstructure is composed basically by the phases ferrite and austenite. Given the metastable character of ferrite, associated phase transformations can occur during thermal treatments, which can lead to a reduction in corrosion resistance. Therefore, the aim of this work was to evaluate the influence of the solution-treated at 1100°C for 30min and aging at 500 and 600°C for 1, 3 and 12h, on the microstructure and corrosion resistance of DSS UNS S31803. The steels were characterized by SEM, EDS, XRD, hardness, microhardness and thermal analysis. The steels aged at 500°C for 1h presented the phase alpha line dispersed in the ferrite, and the steels aged at 600°C for 12h presented the phases alpha line, sigma and chi. In the assays of double cycle potentiodynamic reactivation in solution of 0.5M H2SO4 and 0.01M KSNC, it was observed that no sensitization occurred. Furthermore, in the tests of cyclic potentiodynamic polarization, in 3.5% NaCl solution, it was verified that the precipitation of the alpha line phase did not alter corrosion resistance; nevertheless, the sigma phase reduced corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document