Coastal salt-marshes plant communities of the Salicornietea fruticosae class in Apulia (Italy)

Biologia ◽  
2014 ◽  
Vol 69 (1) ◽  
Author(s):  
Saverio Sciandrello ◽  
Valeria Tomaselli

AbstractAn overview of the salt-marsh herbland and scrub vegetation belonging to the class Salicornietea fruticosae Br.-Bl. et Tx. ex A. Bolòs y Vayreda 1950 in Apulia is presented. Data available from literature have been supplemented with original relevés performed in different locations of the Apulia region. On the basis of a total of 297 relevés, fifteen communities have been defined, according to the traditional phytosociological system based on dominant and/or diagnostic taxa. For comparison purposes, the salt-marsh vegetation has been classified using numerical methods. The results obtained show that most of the clusters correspond to specific associations, and confirm the division into vegetation alliances and orders. Numerical analysis also allowed us to assign the proper allocation of some associations and plant communities drawn from literature. Five alliances, with plant communities characterized by specific ecological features, have been discriminated: Sarcocornion alpini and Arthrocnemion glauci (lower marshes), Salicornion fruticosae (middle marshes), Inulion crithmoidis and Suaedion brevofoliae (upper marshes). In addition, during the field work, a population of Halocnemum strobilaceum (Arthrocnemo-Halocnemetum strobilacei), new record for the Apulia region, has been found.

2019 ◽  
Vol 305 (10) ◽  
pp. 899-912 ◽  
Author(s):  
Zuzana Dítě ◽  
Róbert Šuvada ◽  
Pavol Eliáš ◽  
Vladimír Píš ◽  
Daniel Dítě

2020 ◽  
Author(s):  
Lafage Denis ◽  
Carpentier Alexandre ◽  
Sylvain Duhamel ◽  
Christine Dupuy ◽  
Eric Feunteun ◽  
...  

AbstractSalt marshes are under high, and increasing, anthropogenic pressures that have notably been reported to affect the diet of several fish species, probably resulting in nursery function alterations. Most of the previous studies in Europe were yet based on gut content analysis of fish, which can be considered a snapshot of immediate impacts of salt-marsh changes, and hardly of long-term effects of disturbances. In this study, we investigated the impact of vegetation type (resulting from both plant invasion and sheep grazing) by assessing trophic network (and especially fish diet and position) of different salt-marsh conditions. Replicated samples of basic sources (particular organic matter and microphytobenthos), dominant vegetation, potential aquatic and terrestrial prey and fish of 3 main species were taken during summer 2010 in two bays from Western France (Mont -Saint-Michel Bay and Seine Estuary) and analysed using C and N stable isotope compositions. All response variables tested (overall trophic organization, trophic niche and trophic position) provided consistent results, i.e. a dominant site effect and a weaker effect of vegetation type. Site effect was attributed to differences in anthropogenic Nitrogen inputs and tidal regime between the two bays, with more marine signatures associated with a higher frequency of flooding events. A second hypothesis is that E. acuta, which has recently totally replaced typical salt-marsh vegetation in Mont Saint-Michel Bay strongly impacted the nursery function. The trophic status of dominant fish species was unchanged by local salt-marsh vegetation, and considered consistent with their diet, i.e. high for predatory species (the sea bass Dicentrarchus labrax and the common goby Pomatoschistus microps) and lower for biofilm grazing species (the thinlip mullet Chelon ramada). This study finally highlights the relevance of stable isotopes analyses for assessing long-term and integrative effects of changes in vegetation resulting from human disturbances in salt marshes.HighlightsCross-ecosystem subsidies are of high functional importance, notably in salt marshesFish are vectors of exchanges, most European studies being based on their gut contentUsing stable isotopes we analysed the effect of surrounding vegetation on food websSurprisingly we found weak vegetation and strong site effects on all metricsNitrogen inputs, site accessibility and loss of nursery function can explain this factAbstract Figure


2013 ◽  
Vol 3 (1) ◽  
pp. 58-68
Author(s):  
Luydmila M. Morozova ◽  
Svetlana N. Ektova

The study is focused on the description of the vegetation and the general environment all characteristics of the salt marshes along coasts in the Baydaratskaya Bay there are of the Kara Sea in the southern tundra subzone of Russian Arctic. In tidal salt marsh habitats, several successional stages and types of communities depending on part of tidal zone. The plant communities study areas located close to research stations were represented by 50 species of vascular plant, 15 mosses and 3 lichens. The coastal vegetation tends to be floristically intermediate between the species composition of typical salt marshes communities (obligate and facultative halophytes) and species from adjacent tundra plains which can be able to tolerate occasional flooding by salt water. Zonation of salt marsh vegetation and floristic diversity were compared with the data for northern area of Kara Sea coasts.


2017 ◽  
Vol 14 (16) ◽  
pp. 3763-3779 ◽  
Author(s):  
Jeffrey J. Kelleway ◽  
Neil Saintilan ◽  
Peter I. Macreadie ◽  
Jeffrey A. Baldock ◽  
Peter J. Ralph

Abstract. Coastal salt marshes are dynamic, intertidal ecosystems that are increasingly being recognised for their contributions to ecosystem services, including carbon (C) accumulation and storage. The survival of salt marshes and their capacity to store C under rising sea levels, however, is partially reliant upon sedimentation rates and influenced by a combination of physical and biological factors. In this study, we use several complementary methods to assess short-term (days) deposition and medium-term (months) accretion dynamics within a single marsh that contains three salt marsh vegetation types common throughout southeastern (SE) Australia.We found that surface accretion varies among vegetation assemblages, with medium-term (19 months) bulk accretion rates in the upper marsh rush (Juncus) assemblage (1.74 ± 0.13 mm yr−1) consistently in excess of estimated local sea-level rise (1.15 mm yr−1). Accretion rates were lower and less consistent in both the succulent (Sarcocornia, 0.78 ± 0.18 mm yr−1) and grass (Sporobolus, 0.88 ± 0.22 mm yr−1) assemblages located lower in the tidal frame. Short-term (6 days) experiments showed deposition within Juncus plots to be dominated by autochthonous organic inputs with C deposition rates ranging from 1.14 ± 0.41 mg C cm−2 d−1 (neap tidal period) to 2.37 ± 0.44 mg C cm−2 d−1 (spring tidal period), while minerogenic inputs and lower C deposition dominated Sarcocornia (0.10 ± 0.02 to 0.62 ± 0.08 mg C cm−2 d−1) and Sporobolus (0.17 ± 0.04 to 0.40 ± 0.07 mg C cm−2 d−1) assemblages.Elemental (C : N), isotopic (δ13C), mid-infrared (MIR) and 13C nuclear magnetic resonance (NMR) analyses revealed little difference in either the source or character of materials being deposited among neap versus spring tidal periods. Instead, these analyses point to substantial redistribution of materials within the Sarcocornia and Sporobolus assemblages, compared to high retention and preservation of organic inputs in the Juncus assemblage. By combining medium-term accretion quantification with short-term deposition measurements and chemical analyses, we have gained novel insights into above-ground biophysical processes that may explain previously observed regional differences in surface dynamics among key salt marsh vegetation assemblages. Our results suggest that Sarcocornia and Sporobolus assemblages may be particularly susceptible to changes in sea level, though quantification of below-ground processes (e.g. root production, compaction) is needed to confirm this.


2021 ◽  
Vol 8 ◽  
Author(s):  
Denis Lafage ◽  
Alexandre Carpentier ◽  
Sylvain Duhamel ◽  
Christine Dupuy ◽  
Eric Feunteun ◽  
...  

Salt marshes are under increasing anthropogenic pressures that have been reported to affect the diet of fish (e.g., change in prey composition and availability), eventually resulting in alterations in their nursery function. Most studies in Europe are based on fish gut content analysis, which only reflect a small proportion of pressures to salt marshes, and do not necessarily reflect long-term disturbances. In this study, we investigated the impact of salt-marsh vegetation type on trophic network structures (i.e., fish diet and trophic position). Primary producers (particulate organic matter, microphytobenthos, and dominant terrestrial plants), potential aquatic and terrestrial prey, and fish of two dominant species (sea bass and thinlip mullet) were sampled during the summer of 2010 in four creeks from two sites from Western France (the Mont-Saint-Michel Bay and the Seine Estuary). Analysis was undertaken using C and N stable-isotope compositions. Tested response variables (diet and trophic position) suggested a dominant site effect and a weaker effect of surrounding vegetation type. Site effect was attributed to differences in anthropogenic nitrogen inputs (with a steep increase in the Mont-Saint-Michel Bay) and tidal regime between the two bays, with more marine signatures associated with a higher frequency and duration of tidal flooding events in the Seine Estuary. A second hypothesis is that invasive Elytrigia acuta, which has recently replaced typical salt-marsh vegetation in Mont-Saint-Michel Bay, negatively impacted the native salt-marshes nursery function by modifying the access to terrestrial prey on this site. The trophic position of the sea bass and the thinlip mullet was unchanged by local salt-marsh vegetation, and considered consistent with their diet. This study highlights the relevance of stable-isotopes analyses for assessing long-term and integrative effects of changes in vegetation resulting from human disturbances in salt marshes.


Vegetatio ◽  
1985 ◽  
Vol 61 (1-3) ◽  
pp. 45-54 ◽  
Author(s):  
D. H. Dalby

2003 ◽  
Vol 33 (2-3) ◽  
pp. 267-288 ◽  
Author(s):  
Manfred Haacks ◽  
Dietbert Thannheiser

Sign in / Sign up

Export Citation Format

Share Document