scholarly journals Correction to: Sordaria fimicola-like ascomycete isolated from Pinus coulteri. Needles in Slovakia

Biologia ◽  
2018 ◽  
Vol 73 (6) ◽  
pp. 561-561
Author(s):  
Helena Ivanová ◽  
Anna Onderková ◽  
Peter Pristaš
Biologia ◽  
2018 ◽  
Vol 73 (6) ◽  
pp. 553-559
Author(s):  
Helena Ivanová ◽  
Anna Onderková ◽  
Peter Pristaš

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1573-1593
Author(s):  
Muhammad Saleem ◽  
Bernard C Lamb ◽  
Eviatar Nevo

Abstract Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 87-99
Author(s):  
Bernard C Lamb ◽  
Muhammad Saleem ◽  
William Scott ◽  
Nina Thapa ◽  
Eviatar Nevo

Abstract We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0147425 ◽  
Author(s):  
George Newcombe ◽  
Jason Campbell ◽  
David Griffith ◽  
Melissa Baynes ◽  
Karen Launchbaugh ◽  
...  
Keyword(s):  

The Condor ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 489-508
Author(s):  
Matthew P. Alexander ◽  
Kevin J. Burns

AbstractThis study uses mitochondrial DNA (mtDNA) to examine the phylogeography of the White-headed Woodpecker (Picoides albolarvatus), one of the least-studied woodpeckers in North America. A mismatch distribution and calculation of Tajima's D indicate that the overall phylogeographic history of the species is characterized by a recent range expansion that probably occurred after the start of the Pleistocene. In addition, a nested clade phylogeographic analysis indicates that additional processes such as allopatric fragmentation and restricted gene flow have influenced the evolutionary history of this species. Traditionally, the White-headed Woodpecker has been split into two subspecies whose distributions meet in the northern part of the Transverse Ranges in California. The two subspecies differ morphologically, with the southern subspecies having a larger bill in proportion to its body size than the northern subspecies. Geographical variation in mtDNA is concordant with a division at the Transverse Ranges that corresponds to the morphological variation seen between the two subspecies. An analysis of molecular variance indicates that 27% of the genetic variation results from differences between the northern and southern subspecies. Furthermore, birds in the northern part of the range differ from those in the southern part of the range by at least one base substitution. These results agree with the hypothesis that the larger bill of the southern subspecies is the result of recent local adaptation to feeding on the large cones of Coulter pines (Pinus coulteri).


1954 ◽  
Vol 41 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Carl W. Bretzloff
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document