scholarly journals Inherited Differences in Crossing Over and Gene Conversion Frequencies Between Wild Strains of Sordaria fimicola From “Evolution Canyon”

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1573-1593
Author(s):  
Muhammad Saleem ◽  
Bernard C Lamb ◽  
Eviatar Nevo

Abstract Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 87-99
Author(s):  
Bernard C Lamb ◽  
Muhammad Saleem ◽  
William Scott ◽  
Nina Thapa ◽  
Eviatar Nevo

Abstract We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 831-849
Author(s):  
Doris B Chin ◽  
Rosa Arroyo-Garcia ◽  
Oswaldo E Ochoa ◽  
Rick V Kesseli ◽  
Dean O Lavelle ◽  
...  

Abstract Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10–3 to 10–4 per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion.


2021 ◽  
Author(s):  
Fan Zhang ◽  
Jessica L. Weckhorst ◽  
Adrien Assié ◽  
Ciara Hosea ◽  
Christopher A. Ayoub ◽  
...  

Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans strains that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the phylogenetic and functional diversity naturally found in the C. elegans microbiome. Using this community, we show that C. elegans utilizes immune, xenobiotic and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with the enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of daf-2/IGFR and requires the insulin signaling transcription factors daf-16/FOXO and pqm-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum is correlated positively with host outcomes, as animals that develop faster are larger and have higher gut Ochrobactrum colonization as adults. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of microbiome composition in C. elegans.


Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 525-547
Author(s):  
Lisa D Brooks ◽  
R William Marks

ABSTRACT The amount and form of natural genetic variation for recombination were studied in six lines for which second chromosomes were extracted from a natural population of Drosophila melanogaster. Multiply marked second, Χ and third chromosomes were used to score recombination. Recombination in the second chromosomes varied in both amount and distribution. These second chromosomes caused variation in the amount and distribution of crossing over in the Χ chromosome and also caused variation in the amount, but not the distribution, of crossing over in the third chromosome. The total amount of crossing over on a chromosome varied by 12-14%. One small region varied twofold; other regions varied by 16-38%. Lines with less crossing over on one chromosome generally had less crossing over on other chromosomes, the opposite of the standard interchromosomal effect. These results show that modifiers of recombination can affect more than one chromosome, and that the variation exists for fine-scale response to selection on recombination.


1988 ◽  
Vol 51 (2) ◽  
pp. 89-93 ◽  
Author(s):  
B. Rattray ◽  
A. M. Rose

SummaryThe Rec-1 strain of Caenorhabditis elegans increases recombination frequency three-fold. In this paper, we have investigated the effect of Rec-1 on the intragenic recombination phenomena of crossing-over and gene conversion. These events were increased two- to three-fold as was X-chromosome non-disjunction. All of the recovered recombinants were independent events, indicating that Rec-1 does not act pre-meiotically. The pattern of recombination in the Rec-1 strain resembles a meiotic pattern more than a radiation expansion. We conclude from this result that the Rec-1 enhancement of recombination is not the result of an increased number of DNA lesions randomly distributed along the chromosome. The increased recombination frequency of Rec-1 was not accompanied by any detrimental effects on growth, progeny number or spontaneous mutation rate. In this regard, the results may have implications for models which propose either selective advantage or disadvantage accompanying increased recombination.


Genome ◽  
1996 ◽  
Vol 39 (1) ◽  
pp. 150-154 ◽  
Author(s):  
Elizabeth R. Waters ◽  
Barbara A. Schaal

Hybridization is a common phenomenon that results in complex genomes. How ancestral genomes interact in hybrids has long been of great interest. Recombination among ancestral genomes may increase or decrease genetic variation. This study examines rDNA from members of the Brassica triangle for evidence of gene conversion across ancestral genomes. Gene conversion is a powerful force in the evolution of multigene families. It has previously been shown that biased gene conversion can act to homogenize rDNA repeats within hybrid genomes. Here, we find no evidence for biased gene conversion or unequal crossing over across ancestral genomes in allotetraploid Brassica species. We suggest that, while basic genomic processes are shared by all organisms, the relative frequency of these processes and their evolutionary importance may differ among lineages. Key words : Brassica, rDNA, gene conversion, allotetraploids.


Genetics ◽  
1978 ◽  
Vol 89 (3) ◽  
pp. 467-497
Author(s):  
Y Kitani

ABSTRACT From the analysis of large samples of gene conversion asci in the g locus of Sordaria fimicola, it was found that neither the conversion event itself nor conversion-associated recombination of flanking markers cause either chiasma or chromatid interference with crossing over in a neighboring interval. The presence of more than one kind of crossover event, one causing interference the other not, is considered. The existence of two kinds of gene loci, one of single-cistron composition and the other of multiple-cistron composition, is discussed in relation to reciprocal recombination within a locus.


Genetics ◽  
1985 ◽  
Vol 109 (3) ◽  
pp. 599-610
Author(s):  
Angelos Kalogeropoulos ◽  
Pierre Thuriaux

ABSTRACT A hybrid DNA (hDNA) model of recombination has been algebraically formulated, which allows the prediction of frequencies of postmeiotic segregation and conversion of a given allele and their probability of being associated with a crossing over. The model considered is essentially the "Aviemore model." In contrast to some other interpretations of recombination, it states that gene conversion can only result from the repair of heteroduplex hDNA, with postmeiotic segregation resulting from unrepaired heteroduplexes. The model also postulates that crossing over always occurs distally to the initiation site of the hDNA. Eleven types of conversion and postmeiotic segregation with or without associated crossover were considered. Their theoretical frequencies are given by 11 linear equations with ten variables, four describing heteroduplex repair, four giving the probability of hDNA formation and its topological properties and two giving the probability that crossing over occurs at the left or right of the converting allele.—Using the experimental data of Kitani and coworkers on conversion at the six best studied gray alleles of Sordaria fimicola, we found that the model considered fit the data at a P level above or very close (allele h4) to the 5% level of sampling error provided that the hDNA is partly asymmetric. The best fitting solutions are such that the hDNA has an equal probability of being formed on either chromatid or, alternatively, that both DNA strands have the same probability of acting as the invading strand during hDNA formation. The two mismatches corresponding to a given allele are repaired with different efficiencies. Optimal solutions are found if one allows for repair to be more efficient on the asymmetric hDNA than on the symmetric one. In the case of allele g1, our data imply that the direction of repair is nonrandom with respect to the strand on which it occurs.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 727-742 ◽  
Author(s):  
R Frankham ◽  
D A Briscoe ◽  
R K Nurthen

ABSTRACT Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 × 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination.


Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 375-392
Author(s):  
B A Kunz ◽  
G R Taylor ◽  
R H Haynes

ABSTRACT The biosynthesis of thymidylate in the yeast Saccharomyces cerevisiae can be inhibited by antifolate drugs. We have found that antifolate treatment enhances the formation of leucine prototrophs in a haploid strain of yeast carrying, on the same chromosome, two different mutant leu2 alleles separated by Escherichia coli plasmid sequences. That this effect is a consequence of thymine nucleotide depletion was verified by the finding that provision of exogenous thymidylate eliminates the increased production of Leu+ colonies. DNA hybridization analysis revealed that recombination, including reciprocal exchange, gene conversion and unequal sister-chromatid crossing over, between the duplicated genes gave rise to the induced Leu+ segregants. Although gene conversion unaccompanied by crossing over was responsible for the major fraction of leucine prototrophs, events involving reciprocal exchange exhibited the largest increase in frequency. These data show that recombination is induced between directly repeated DNA sequences under conditions of thymine nucleotide depletion. In addition, the results of this and previous studies are consistent with the possibility that inhibition of thymidylate biosynthesis in yeast may create a metabolic condition that provokes all forms of mitotic recombination.


Sign in / Sign up

Export Citation Format

Share Document