scholarly journals Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study

2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Cheuk Tang ◽  
Emily Eaves ◽  
Kristen Dams-O’Connor ◽  
Lap Ho ◽  
Eric Leung ◽  
...  

AbstractDiffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.


2015 ◽  
Vol 5 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Dominic E. Nathan ◽  
Terrence R. Oakes ◽  
Ping Hong Yeh ◽  
Louis M. French ◽  
Jamie F. Harper ◽  
...  




2013 ◽  
Vol 1537 ◽  
pp. 201-215 ◽  
Author(s):  
Chandler Sours ◽  
Jiachen Zhuo ◽  
Jacqueline Janowich ◽  
Bizhan Aarabi ◽  
Kathirkamanthan Shanmuganathan ◽  
...  


2015 ◽  
Vol 37 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Beth A. Costine ◽  
Symeon Missios ◽  
Sabrina R. Taylor ◽  
Declan McGuone ◽  
Colin M. Smith ◽  
...  

Stimulation of postnatal neurogenesis in the subventricular zone (SVZ) and robust migration of neuroblasts to the lesion site in response to traumatic brain injury (TBI) is well established in rodent species; however, it is not yet known whether postnatal neurogenesis plays a role in repair after TBI in gyrencephalic species. Here we describe the anatomy of the SVZ in the piglet for the first time and initiate an investigation into the effect of TBI on the SVZ architecture and the number of neuroblasts in the white matter. Among all ages of immaturity examined the SVZ contained a dense mesh network of neurogenic precursor cells (doublecortin+) positioned directly adjacent to the ependymal cells (ventricular SVZ, Vsvz) and neuroblasts organized into chains that were distinct from the Vsvz (abventricular SVZ, Asvz). Though the architecture of the SVZ was similar among ages, the areas of Vsvz and Asvz neuroblast chains declined with age. At postnatal day (PND) 14 the white matter tracts have a tremendous number of individual neuroblasts. In our scaled cortical impact model, lesion size increased with age. Similarly, the response of the SVZ to injury was also age dependent. The younger age groups that sustained the proportionately smallest lesions had the largest SVZ areas, which further increased in response to injury. In piglets that were injured at 4 months of age and had the largest lesions, the SVZ did not increase in response to injury. Similar to humans, swine have abundant gyri and gyral white matter, providing a unique platform to study neuroblasts potentially migrating from the SVZ to the lesioned cortex along these white matter tracts. In piglets injured at PND 7, TBI did not increase the total number of neuroblasts in the white matter compared to uninjured piglets, but redistribution occurred with a greater number of neuroblasts in the white matter of the hemisphere ipsilateral to the injury compared to the contralateral hemisphere. At 7 days after injury, less than 1% of neuroblasts in the white matter were born in the 2 days following injury. These data show that the SVZ in the piglet shares many anatomical similarities with the SVZ in the human infant, and that TBI had only modest effects on the SVZ and the number of neuroblasts in the white matter. Piglets at an equivalent developmental stage to human infants were equipped with the largest SVZ and a tremendous number of neuroblasts in the white matter, which may be sufficient in lesion repair without the dramatic stimulation of neurogenic machinery. It has yet to be determined whether neurogenesis and migrating neuroblasts play a role in repair after TBI and/or whether an alteration of normal migration during active postnatal population of brain regions is beneficial in species with gyrencephalic brains.



Brain Injury ◽  
2013 ◽  
Vol 27 (12) ◽  
pp. 1415-1422 ◽  
Author(s):  
Areeba Adnan ◽  
Adrian Crawley ◽  
David Mikulis ◽  
Morris Moscovitch ◽  
Brenda Colella ◽  
...  


2017 ◽  
Vol 81 (10) ◽  
pp. S245-S246
Author(s):  
Rebecca Trossman ◽  
Sonja Stojanovski ◽  
Joseph Viviano ◽  
Aristotle Voineskos ◽  
Anne Wheeler


2016 ◽  
Vol 32 ◽  
pp. 250
Author(s):  
Charalambos Yiannakkaras ◽  
Nikos Konstantinou ◽  
Eva Pettemeridou ◽  
Fofi Constantinidou ◽  
Eleni Eracleous ◽  
...  


Brain Injury ◽  
2021 ◽  
pp. 1-11
Author(s):  
Blanca Navarro-Main ◽  
Ana Castaño-León ◽  
Amaya Hilario ◽  
Alfonso Lagares Gómez- Abascal ◽  
Jose Periañez ◽  
...  


2013 ◽  
Vol 26 (4) ◽  
pp. 648-660 ◽  
Author(s):  
Gershon Spitz ◽  
Jerome J. Maller ◽  
Richard O’Sullivan ◽  
Jennie L. Ponsford


Sign in / Sign up

Export Citation Format

Share Document