Congenital brain anomalies and chromosomal aberrations from the Zagreb Collection of human brains

2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Božo Krušlin ◽  
Tihana Džombeta ◽  
Miran Bezjak ◽  
Goran Sedmak ◽  
Zdravko Petanjek ◽  
...  

AbstractThe Zagreb Collection of developing and adult human brains consists of approximately 1,300 brains of fetuses, children and adults that were collected following routine autopsies in the period from 1974 to 2014. The collection comprises brains of different normal developmental stages that may serve for investigation of normal human brain development. Previous studies on this material have led to several important contributions on human cortical development, such as the discovery of the transient fetal subplate zone. The Zagreb Collection, however, also contains approximately 100 brains with different anomalies including chromosomal aberrations such as Down syndrome. We have analyzed all the available material from the Zagreb Collection and identified 44 brains of fetuses and children with Down syndrome, 10 with Patau syndrome, 6 with Edwards syndrome as well as 7 holoprosencephalic, 7 hydrocephalic and 4 microcephalic brains. The largest part of the Collection is available for further research using modern genetic, immunocytochemical and imaging methods, especially magnetic resonance imaging. Furthermore, the histological slides from the Zagreb Collection are currently being digitally scanned and made available as virtual slides to general scientific audience. The Zagreb Collection represents unique and versatile resource for the future study of normal and abnormal human brain development.

Author(s):  
Qiaowen Yu ◽  
Yun Peng ◽  
Virendra Mishra ◽  
Austin Ouyang ◽  
Hang Li ◽  
...  

Author(s):  
Wai‐Kit Chan ◽  
Rana Fetit ◽  
Rosie Griffiths ◽  
Helen Marshall ◽  
John O Mason ◽  
...  

Author(s):  
Ugomma C. Eze ◽  
Aparna Bhaduri ◽  
Maximilian Haeussler ◽  
Tomasz J. Nowakowski ◽  
Arnold R. Kriegstein

AbstractThe human cortex comprises diverse cell types that emerge from an initially uniform neuroepithelium that gives rise to radial glia, the neural stem cells of the cortex. To characterize the earliest stages of human brain development, we performed single-cell RNA-sequencing across regions of the developing human brain, including the telencephalon, diencephalon, midbrain, hindbrain and cerebellum. We identify nine progenitor populations physically proximal to the telencephalon, suggesting more heterogeneity than previously described, including a highly prevalent mesenchymal-like population that disappears once neurogenesis begins. Comparison of human and mouse progenitor populations at corresponding stages identifies two progenitor clusters that are enriched in the early stages of human cortical development. We also find that organoid systems display low fidelity to neuroepithelial and early radial glia cell types, but improve as neurogenesis progresses. Overall, we provide a comprehensive molecular and spatial atlas of early stages of human brain and cortical development.


Sign in / Sign up

Export Citation Format

Share Document