human brain development
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 68)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Christopher J Playfoot ◽  
Shaoline Sheppard ◽  
Evarist Planet ◽  
Didier Trono

Transposable elements (TEs) contribute to the evolution of gene regulatory networks and are dynamically expressed throughout human brain development and disease. One gene regulatory mechanism influenced by TEs is the miRNA system of post-transcriptional control. miRNA sequences frequently overlap TE loci and this miRNA expression landscape is crucial for control of gene expression in adult brain and different cellular contexts. Despite this, a thorough investigation of the spatiotemporal expression of TE-embedded miRNAs in human brain development is lacking. Here, we identify a spatiotemporally dynamic TE-embedded miRNA expression landscape between childhood and adolescent stages of human brain development. These miRNAs sometimes arise from two apposed TEs of the same subfamily, such as for L2 or MIR elements, but in the majority of cases stem from solo TEs. They give rise to in silico predicted high-confidence pre-miRNA hairpin structures, likely represent functional miRNAs and have predicted genic targets associated with neurogenesis. TE-embedded miRNA expression is distinct in the cerebellum when compared to other brain regions, as has previously been described for gene and TE expression. Furthermore, we detect expression of previously non-annotated TE-embedded miRNAs throughout human brain development, suggestive of a previously undetected miRNA control network. Together, as with non-TE-embedded miRNAs, TE-embedded sequences give rise to spatiotemporally dynamic miRNA expression networks, the implications of which for human brain development constitute extensive avenues of future experimental research. To facilitate interactive exploration of these spatiotemporal miRNA expression dynamics, we provide the 'Brain miRTExplorer' web application freely accessible for the community.


Biology Open ◽  
2022 ◽  
Author(s):  
Bilal M. Akhtar ◽  
Priyanka Bhatia ◽  
Shubhra Acharya ◽  
Sanjeev Sharma ◽  
Yojet Sharma ◽  
...  

Human brain development is a complex process where multiple cellular and developmental events are co-ordinated to generate normal structure and function. Alteration in any of these events can impact brain development, manifesting clinically as neurodevelopmental disorders. Human genetic disorders of lipid metabolism often present with features of altered brain function. Lowe syndrome (LS), is a X-linked recessive disease with features of altered brain function. LS results from mutations in OCRL1 that encodes a phosphoinositide 5-phosphatase enzyme. However, the cellular mechanisms by which loss of OCRL1 leads to brain defects remain unknown. Human brain development involves several cellular and developmental features not conserved in other species and understanding such mechanisms remains a challenge. Rodent models of LS have been generated, but failed to recapitulate features of the human disease. Here we describe the generation of human stem cell lines from LS patients. Further, we present biochemical characterization of lipid metabolism in patient cell lines and demonstrate their use as a “disease-in-a-dish” model for understanding the mechanism by which loss of OCRL1 leads to altered cellular and physiological brain development.


2021 ◽  
Author(s):  
Raphael Dos Reis ◽  
Etienne Kornobis ◽  
Alyssa Pereira ◽  
Frédéric Tores ◽  
Judit Carrasco ◽  
...  

Abstract Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and GABA-A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessandro Fiorenzano ◽  
Edoardo Sozzi ◽  
Marcella Birtele ◽  
Janko Kajtez ◽  
Jessica Giacomoni ◽  
...  

AbstractThree-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.


2021 ◽  
Author(s):  
Fan Wang ◽  
Han Zhang ◽  
Zhengwang Wu ◽  
Dan Hu ◽  
Zhen Zhou ◽  
...  

Infancy is a dynamic and immensely important period in human brain development. Studies of infant functional development using resting-state fMRI rely on precisely defined cortical parcellation maps. However, available adult-based functional parcellation maps are not applicable for infants due to their substantial differences in functional organizations. Fine-grained infant-dedicated cortical parcellation maps are highly desired but remain scarce, due to difficulties ranging from acquiring to processing of infant brain MRIs. In this study, leveraging 1,064 high-resolution longitudinal rs-fMRIs from 197 infants from birth to 24 months and advanced infant-dedicated processing tools, we create the first set of infant-specific, fine-grained cortical functional parcellation maps. Besides the conventional folding-based cortical registration, we specifically establish the functional correspondences across individuals using functional gradient densities and generate both age-specific and age-common fine-grained parcellation maps. The first set of comprehensive brain functional developmental maps are accordingly derived, and reveals a complex, hitherto unseen multi-peak fluctuation development pattern in temporal variations of gradient density, network sizes, and local efficiency, with more dynamic changes during the first 9 months than other ages. Our proposed method is applicable in generating fine-grained parcellations for the whole lifespan, and our parcellation maps will be available online to advance the neuroimaging field.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dang Ngoc Anh Suong ◽  
Keiko Imamura ◽  
Ikuyo Inoue ◽  
Ryotaro Kabai ◽  
Satoko Sakamoto ◽  
...  

AbstractOrganoid technology provides an opportunity to generate brain-like structures by recapitulating developmental steps in the manner of self-organization. Here we examined the vertical-mixing effect on brain organoid structures using bioreactors and established inverted brain organoids. The organoids generated by vertical mixing showed neurons that migrated from the outer periphery to the inner core of organoids, in contrast to orbital mixing. Computational analysis of flow dynamics clarified that, by comparison with orbital mixing, vertical mixing maintained the high turbulent energy around organoids, and continuously kept inter-organoid distances by dispersing and adding uniform rheological force on organoids. To uncover the mechanisms of the inverted structure, we investigated the direction of primary cilia, a cellular mechanosensor. Primary cilia of neural progenitors by vertical mixing were aligned in a multidirectional manner, and those by orbital mixing in a bidirectional manner. Single-cell RNA sequencing revealed that neurons of inverted brain organoids presented a GABAergic character of the ventral forebrain. These results suggest that controlling fluid dynamics by biomechanical engineering can direct stem cell differentiation of brain organoids, and that inverted brain organoids will be applicable for studying human brain development and disorders in the future.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Soheil Yousefi ◽  
Ruizhi Deng ◽  
Kristina Lanko ◽  
Eva Medico Salsench ◽  
Anita Nikoncuk ◽  
...  

Abstract Background Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. Methods Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. Results Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. Conclusion This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.


Author(s):  
Sarah Fernandes ◽  
Davis Klein ◽  
Maria C. Marchetto

Brain organoids are proving to be physiologically relevant models for studying human brain development in terms of temporal transcriptional signature recapitulation, dynamic cytoarchitectural development, and functional electrophysiological maturation. Several studies have employed brain organoid technologies to elucidate human-specific processes of brain development, gene expression, and cellular maturation by comparing human-derived brain organoids to those of non-human primates (NHPs). Brain organoids have been established from a variety of NHP pluripotent stem cell (PSC) lines and many protocols are now available for generating brain organoids capable of reproducibly representing specific brain region identities. Innumerous combinations of brain region specific organoids derived from different human and NHP PSCs, with CRISPR-Cas9 gene editing techniques and strategies to promote advanced stages of maturation, will successfully establish complex brain model systems for the accurate representation and elucidation of human brain development. Identified human-specific processes of brain development are likely vulnerable to dysregulation and could result in the identification of therapeutic targets or disease prevention strategies. Here, we discuss the potential of brain organoids to successfully model human-specific processes of brain development and explore current strategies for pinpointing these differences.


2021 ◽  
Author(s):  
Pia A. Johansson ◽  
Per Ludvik Brattås ◽  
Christopher H. Douse ◽  
PingHsun Hsieh ◽  
Anita Adami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document