Soret and dufour effects on MHD mixed convection heat and mass transfer in a micropolar fluid

2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Darbhasayanam Srinivasacharya ◽  
Mendu Upendar

AbstractThis paper analyzes the flow, heat and mass transfer characteristics of the mixed convection on a vertical plate in a micropolar fluid in the presence of Soret and Dufour effects. A uniform magnetic field of magnitude is applied normal to the plate. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The rate of heat and mass transfer at the plate are presented graphically for various values of coupling number, magnetic parameter, Prandtl number, Schmidt number, Dufour and Soret numbers. In addition, the skin-friction coefficient, the wall couple stress are shown in a tabular form.

2011 ◽  
Vol 3 (4) ◽  
pp. 389-400 ◽  
Author(s):  
D. Srinivasacharya ◽  
Ch. RamReddy

AbstractA mathematical model for the steady, mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a micropolar fluid in the presence of Soret and Dufour effects is presented. The non-linear governing equations and their associated boundary conditions are initially cast into dimensionless forms using local similarity transformations. The resulting system of equations is then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The non-dimensional velocity, microrotation, temperature and concentration profiles are displayed graphically for different values of coupling number, Soret and Dufour numbers. In addition, the skin-friction coefficient, the Nusselt number and Sherwood number are shown in a tabular form.


2014 ◽  
Vol 20 (2) ◽  
pp. 183-195 ◽  
Author(s):  
D. Srinivasacharya ◽  
Upendar Mendu

In this paper, the effects of radiation and first order chemical reaction on free convection heat and mass transfer in a micropolar fluid is considered. A uniform magnetic field is applied normal to the plate. The plate is maintained with variable surface heat and mass fluxes. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The dimensionless velocity, microrotation, temperature, concentration and heat and mass transfer rates are presented graphically for various values of coupling number, magnetic parameter, radiation parameter, chemical reaction parameter. The numerical values of the skin friction and wall couple stress for different values of governing parameters are also tabulated.


2011 ◽  
Vol 16 (1) ◽  
pp. 100-115 ◽  
Author(s):  
D. Srinivasacharya ◽  
Ch. RamReddy

In this paper, the Soret and Dufour effects on the steady, laminar mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a non-Darcy porous medium saturated with micropolar fluid are studied. The governing partial differential equations are transformed into ordinary differential equations. The local similarity solutions of the transformed dimensionless equations for the flow, microrotation, heat and mass transfer characteristics are evaluated using Keller-box method. Numerical results are presented in the form of velocity, microrotation, temperature and concentration profiles within the boundary layer for different parameters entering into the analysis. Also the effects of the pertinent parameters on the local skin friction coefficient and rates of heat and mass transfer in terms of the local Nusselt and Sherwood numbers are also discussed.


2014 ◽  
Vol 41 (2) ◽  
pp. 93-117
Author(s):  
B.I. Olajuwon ◽  
J.I. Oahimire ◽  
M.A. Waheed

This study presents a mathematical analysis of a hydromagnetic boundary layer flow, heat and mass transfer characteristics on steady twodimensional flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with uniform magnetic field in the presence of thermal radiation. The governing system of partial differential equations is first transformed into a system of non- linear ordinary differential equation using the usual similarity transformation. The resulting coupled non-linear ordinary differential equations are then solved using perturbation technique. With the help of graphs, the effects of the various important parameters entering into the problem on the velocity, temperature and concentration fields within the boundary layer are separately discussed. The effects of the pertinent parameters on the wall temperature, wall solutal concentration, skin friction coefficient and the rate of heat and mass transfer are presented numerically in tabular form. The results obtained showed that these parameters have significant influence on the flow.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Odelu Ojjela ◽  
N. Naresh Kumar

The objective of the present study is to investigate the first-order chemical reaction and Soret and Dufour effects on an incompressible MHD combined free and forced convection heat and mass transfer of a micropolar fluid through a porous medium between two parallel plates. Assume that there are a periodic injection and suction at the lower and upper plates. The nonuniform temperature and concentration of the plates are assumed to be varying periodically with time. A suitable similarity transformation is used to reduce the governing partial differential equations into nonlinear ordinary differential equations and then solved numerically by the quasilinearization method. The fluid flow and heat and mass transfer characteristics for various parameters are analyzed in detail and shown in the form of graphs. It is observed that the concentration of the fluid decreases whereas the temperature of the fluid enhances with the increasing of chemical reaction and Soret and Dufour parameters.


2010 ◽  
Vol 65 (11) ◽  
pp. 950-960 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Qasim

An analysis has been carried out to study the combined effects of heat and mass transfer on the unsteady flow of a micropolar fluid over a stretching sheet. The thermal radiation effects are presented. The arising nonlinear partial differential equations are first reduced to a set of nonlinear ordinary differential equations and then solved by the homotopy analysis method (HAM). Plots for various interesting parameters are presented and discussed. Numerical data for surface shear stress, Nusselt number, and Sherwood number in steady case are also tabulated. Comparison between the present and previous limiting results is given.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
D. Srinivasacharya ◽  
Mekonnen Shiferaw

The present study investigates magnetic, first-order chemical reaction, Soret and Dufour effects on electrically conducting micropolar fluid flow between two circular cylinders. The inner and outer surfaces of the annular cylinder are maintained at different constant wall temperature where the outer cylinder is rotating and inner cylinder remains stationary. The governing nonlinear partial differential equations are transformed into a system of ordinary differential equations (ODEs) using similarity transformations. The resulting equations are then solved for approximate analytical series solutions using homotopy analysis method (HAM). The effects of various parameters on the velocity, microrotation temperature and concentration are discussed and shown graphically.


2013 ◽  
Vol 10 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Ali J. Chamkha ◽  
S.M.M. EL-Kabeir ◽  
A.M. Rashad

An analysis is performed to study the thermal radiation and chemical reaction effects on coupled heat and mass transfer by MHD natural convective boundary-layer flow of a micropolar fluid over a permeable truncated cone with variable surface temperature and concentration. A suitable set of dimensionless variables is used to transform the governing equations of the problem into a non-similar form. The resulting non-similar equations have the property that they reduce to various special cases previously considered in the literature. An adequate and efficient implicit, tri-diagonal finite difference scheme is employed for the numerical solution of the obtained equations. Various comparisons with previously published work are performed and the results are found to be in excellent agreement. A representative set of numerical results for the velocity, microrotation, temperature and concentration profiles as well as the local skin-friction coefficient, local wall couple stress, local Nusselt number and the local Sherwood number is presented graphically for various parametric conditions and discussed.DOI: http://dx.doi.org/10.3329/jname.v10i2.15898


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Eshetu Haile ◽  
B. Shankar

Heat and mass transfer in the boundary-layer flow of unsteady viscous nanofluid along a vertical stretching sheet in the presence of magnetic field, thermal radiation, heat generation, and chemical reaction are presented in this paper. The sheet is situated in the xz-plane and y is normal to the surface directing towards the positive y-axis. The sheet is continuously stretching in the positive x-axis and the external magnetic field is applied to the system parallel to the positive y-axis. With the help of similarity transformations, the partial differential equations are transformed into a couple of nonlinear ordinary differential equations. The new problem is then solved numerically by a finite-difference scheme known as the Keller-box method. Effects of the necessary parameters in the flow field are explicitly studied and briefly explained graphically and in tabular form. For the selected values of the pertinent parameters appearing in the governing equations, numerical results of velocity, temperature, concentration, skin friction coefficient, Nusselt number, and Sherwood number are obtained. The results are compared to the works of others (from previously published journals) and they are found in excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document